1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
3 years ago
9

Rectangle J'K'L'M' shown on the grid is the image of rectangle JKLM after transformation. The same transformation will be applie

d on trapezoid STUV.
What will be the location of T' in the image trapezoid S'T'U'V'?

Mathematics
1 answer:
Y_Kistochka [10]3 years ago
6 0

Answer:

The coordinates of T' will be T'(13,-1)

Step-by-step explanation:

step 1

Find the rule of the translation

take any point of rectangle JKLM (pre-image)

The coordinate of point k(-3,2)

The coordinate of point k'(4,7)

so

The rule of the transformation

k(-3,2) -----> k'(4,7)

is equal to

(x,y) ------> (x+7,y+5)

That means ----> the translation is 7 units at right and 5 units up

step 2

Apply the rule of the translation at the coordinate T of trapezoid STUV

we have

T(6,-6)

(x,y) ------> (x+7,y+5)

T(6,-6) ------> T'(6+7,-6+5)

T(6,-6) ------> T'(13,-1)

therefore

The coordinates of T' will be T'(13,-1)

You might be interested in
There is a bag filled with 5 blue and 6 red marbles.
gladu [14]

Answer:

5/11×5/11= 25/121 so the answer is 25/121

4 0
2 years ago
Helpppppppppppppppppppppppp
kupik [55]

Answer:

360\ cm^2

Step-by-step explanation:

<u>Step 1:  Determine the area of the bottom rectangle</u>

A = l * w

A = 10\ cm * 12\ cm

A = 120\ cm^2

<u>Step 2:  Determine the area of the back rectangle</u>

A = l * w

A = 10\ cm * 5\ cm

A = 50\ cm^2

<u>Step 3:  Determine the area of the top rectangle</u>

A = l * w

A = 10\ cm * 13\ cm

A = 130\ cm^2

<u>Step 4:  Determine the area of the triangle</u>

A = \frac{h*b}{2}

A = \frac{5\ cm * 12\ cm}{2}

A = \frac{60\ cm^2}{2}

A = 30\ cm^2

<u>Step 5:  Determine the surface area</u>

120\ cm^2 + 50\ cm^2 + 130\ cm^2 + 2(30\ cm^2)

360\ cm^2

Answer: 360\ cm^2

4 0
2 years ago
Complete the following sentences to compare the two functions. Over the interval [2, 6], the average rate of change of v is the
lubasha [3.4K]

it's look like heaven bkl

4 0
2 years ago
PLZZZ HELPP NOWWWWW......
andreyandreev [35.5K]

Answer:

3.5% of 20, (0.035)*20, and 7% of 10

Step-by-step explanation:

Converting the mixed number (3 1/2) to a decimal yields 3.5, so 3.5% of 20 is correct.

3 1/2 is not equal to 3 1/2%, so 3 1/2 * 20 is not correct.

Converting the percentage to a decimal yields .035 which makes .35 too large, so (0.35) * 20 is not correct.

Changing the percentage to a decimal yields .035, so (0.035) * 20 is correct.

If you divide 20 by 2, you get 10, and if you multiply 2 by 3 1/2, you get 7. The 2 remains part of the expression, so it is equal to 3 1/2 of 20.

4 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Other questions:
  • F(x) = x2 − 2x <br> How would I factor this?
    10·2 answers
  • HELP WITH GEOMETRY!!
    8·2 answers
  • What is that answers ? please
    13·1 answer
  • How many ounces are there in 13.5 pounds.
    6·2 answers
  • Let f(x)=3x=5 and g(x)=-4+7 find (f*g)(-4)
    14·1 answer
  • Find the cost for 812 kwhr of electricity at 7.3 cents per kwhr.
    7·1 answer
  • Plz do this ill mark brainly​
    13·1 answer
  • The central idea or lesson to be learned in a story. *
    14·2 answers
  • Can you go to my profile and help with some questions please?<br> Please
    10·1 answer
  • I need help asap please help
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!