Hello from MrBillDoesMath!
Answer:
(3/4) a^(-5)b^(-3)c^2
Discussion:
(18 a^-3b^2c^6)/ (24 a^2b^5c^4) =
(18/24) a^ (-3-2) b^(2-5) c^(6-4) =
as a^-3/a^-2 = a ^ (-3-2) = a^(-5), for examples
(3/4) a^(-5)b^(-3)c^2
Thank you,
MrB
Answer:
The answer to your question is the second option 
Step-by-step explanation:
Expression
![[\frac{(x^{2}y^{3})^{-2}}{(x^{6}y^{3}z)^{2}}]^{3}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%28x%5E%7B2%7Dy%5E%7B3%7D%29%5E%7B-2%7D%7D%7B%28x%5E%7B6%7Dy%5E%7B3%7Dz%29%5E%7B2%7D%7D%5D%5E%7B3%7D)
Process
1.- Divide the fraction in numerator and denominator
a) Numerator
[(x²y³)⁻²]³ = (x⁻⁴y⁻⁶)³ = x⁻¹²y⁻¹⁸
b) Denominator
[(x⁶y³z)²]²= (x¹²y⁶z²)³ = x³⁶y¹⁸z⁶
2.- Simplify like terms
a) x⁻¹²x⁻³⁶ = x⁻⁴⁸
b) y⁻¹⁸y⁻¹⁸= y⁻³⁶
c) z⁻⁶
3.- Write the fraction

Answer:
arithmetic sequence: 24, 42, 66, 90, 114; y = 24x - 30
geometric sequence: -54, 162, -486, 1458, -4374; y = -6(-3)^(x - 1)
Step-by-step explanation:
Arithmetic sequence:
-6, 18, ...
18 - (-6) = 24
18 + 24 = 42
42 + 24 = 66
66 + 24 = 90
90 + 24 = 114
y = -6 + 24(x - 1)
y = -6 + 24x - 24
y = 24x - 30
Geometric sequence:
-6, 18, ...
18/(-6) = -3
18 * (-3) = -54
-54 * (-3) = 162
162 * (-3) = -486
-486 * (-3) = 1458
1458 * (-3) = -4374
y = -6(-3)^(x - 1)
Answer:
(the pic)
Step-by-step explanation:
I used a link