Which set of integers is a Pythagorean triple and are side lengths of a right triangle?
1 answer:
A) 3, 5, 6
c squared = a squared + b squared
6 squared = 5 squared + 3 squared
36 = 25 + 9
36 ≠ 34 (not a right triangle)
b) 13, 12, 5
c squared = a squared + b squared
13 squared = 12 squared + 5 squared
169 = 144 + 25
169 = 169 (is a right triangle)
c) 17, 15, 9
c squared = a squared + b squared
17 squared = 15 squared + 9 squared
289 = 225 + 81
289 ≠ 306 (not a right triangle)
d) 12, 8, 6
c squared = a squared + b squared
12 squared = 8 squared + 6 squared
144 = 64 + 36
144 ≠ 100 (not a right triangle)
hope this helps!!
You might be interested in
Answer:
radius = 5 in
Step-by-step explanation:
Using the formula for calculating the area (A) of a circle
A = πr² ( r is the radius )
here A = 78.5, hence
3.14r² = 78.5 ( divide both sides by 3.14 )
r² =
= 25 ( take the square root of both sides )
r =
= 5
Answer:
3x
Step-by-step explanation:
0.0058 is 0.58% (I think so)
Answer:
<h2>
<em>here</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em></h2><h2>
<em>m</em><em>′</em><em><</em><em>1</em><em> </em><em>=</em><em> </em><em>4</em><em>0</em><em>°</em></h2><h2>
<em>and</em></h2><h2>
<em> </em><em>m'</em><em><</em><em>2</em><em>=</em><em> </em><em>2</em><em>0</em><em>°</em></h2><h2>
<em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>+</em><em>+</em><em>+</em><em>+</em><em>--------</em></h2><h2>
<em>sum</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>triangle</em><em> </em><em>is</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em></h2>
Answer:
yes it is 2wwwwwrrriiiteeee annssss