By the binomial theorem,

I assume you meant to say "independent", not "indecent", meaning we're looking for the constant term in the expansion. This happens for k such that
12 - 3k = 0 ===> 3k = 12 ===> k = 4
which corresponds to the constant coefficient

Replace x with π/2 - x to get the equivalent integral

but the integrand is even, so this is really just

Substitute x = 1/2 arccot(u/2), which transforms the integral to

There are lots of ways to compute this. What I did was to consider the complex contour integral

where γ is a semicircle in the complex plane with its diameter joining (-R, 0) and (R, 0) on the real axis. A bound for the integral over the arc of the circle is estimated to be

which vanishes as R goes to ∞. Then by the residue theorem, we have in the limit

and it follows that

Answer:
2. The denominator of the fully simplified expression will be x – 1.
4. The numerator of the fully simplified expression will be –3x + 10.
Step-by-step explanation:
Given the rational expression

Let us first simplify before making our deductions.
Opening the brackets

Taking LCM

Opening the brackets and simplifying

The following statements are therefore true:
2. The denominator of the fully simplified expression will be x – 1.
4. The numerator of the fully simplified expression will be –3x + 10.
Answer:
it will be square root y^5
Step-by-step explanation: Apply the rule x m/n=n√x m to rewrite the exponentiation as a radical.
Answer:convergent
Step-by-step explanation:
Given
Improper Integral I is given as


integration of
is 
![I=1000\times \left [ e^x\right ]^{0}_{-\infty}](https://tex.z-dn.net/?f=I%3D1000%5Ctimes%20%5Cleft%20%5B%20e%5Ex%5Cright%20%5D%5E%7B0%7D_%7B-%5Cinfty%7D)
![I=1000\times I=\left [ e^0-e^{-\infty}\right ]](https://tex.z-dn.net/?f=I%3D1000%5Ctimes%20I%3D%5Cleft%20%5B%20e%5E0-e%5E%7B-%5Cinfty%7D%5Cright%20%5D)
![I=1000\times \left [ e^0-\frac{1}{e^{\infty}}\right ]](https://tex.z-dn.net/?f=I%3D1000%5Ctimes%20%5Cleft%20%5B%20e%5E0-%5Cfrac%7B1%7D%7Be%5E%7B%5Cinfty%7D%7D%5Cright%20%5D)

so the integration converges to 1000 units