Compute the definite integral:
integral_0^1 (5 x + 8)/(x^2 + 3 x + 2) dx
Rewrite the integrand (5 x + 8)/(x^2 + 3 x + 2) as (5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2)):
= integral_0^1 ((5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2))) dx
Integrate the sum term by term and factor out constants:
= 5/2 integral_0^1 (2 x + 3)/(x^2 + 3 x + 2) dx + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand (2 x + 3)/(x^2 + 3 x + 2), substitute u = x^2 + 3 x + 2 and du = (2 x + 3) dx.
This gives a new lower bound u = 2 + 3 0 + 0^2 = 2 and upper bound u = 2 + 3 1 + 1^2 = 6: = 5/2 integral_2^6 1/u du + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/u is log(u): = (5 log(u))/2 right bracketing bar _2^6 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Evaluate the antiderivative at the limits and subtract.
(5 log(u))/2 right bracketing bar _2^6 = (5 log(6))/2 - (5 log(2))/2 = (5 log(3))/2: = (5 log(3))/2 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand 1/(x^2 + 3 x + 2), complete the square:
= (5 log(3))/2 + 1/2 integral_0^1 1/((x + 3/2)^2 - 1/4) dx
For the integrand 1/((x + 3/2)^2 - 1/4), substitute s = x + 3/2 and ds = dx.
This gives a new lower bound s = 3/2 + 0 = 3/2 and upper bound s = 3/2 + 1 = 5/2: = (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 1/(s^2 - 1/4) ds
Factor -1/4 from the denominator:
= (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 4/(4 s^2 - 1) ds
Factor out constants:
= (5 log(3))/2 + 2 integral_(3/2)^(5/2) 1/(4 s^2 - 1) ds
Factor -1 from the denominator:
= (5 log(3))/2 - 2 integral_(3/2)^(5/2) 1/(1 - 4 s^2) ds
For the integrand 1/(1 - 4 s^2), substitute p = 2 s and dp = 2 ds.
This gives a new lower bound p = (2 3)/2 = 3 and upper bound p = (2 5)/2 = 5:
= (5 log(3))/2 - integral_3^5 1/(1 - p^2) dp
Apply the fundamental theorem of calculus.
The antiderivative of 1/(1 - p^2) is tanh^(-1)(p):
= (5 log(3))/2 + (-tanh^(-1)(p)) right bracketing bar _3^5
Evaluate the antiderivative at the limits and subtract. (-tanh^(-1)(p)) right bracketing bar _3^5 = (-tanh^(-1)(5)) - (-tanh^(-1)(3)) = tanh^(-1)(3) - tanh^(-1)(5):
= (5 log(3))/2 + tanh^(-1)(3) - tanh^(-1)(5)
Which is equal to:
Answer: = log(18)
Since you know the area and the width, you can divide the area by the width to find the length. This gives you a length of 110 yards. To find the perimeter of the soccer field, you would add all the side lengths together. Since the width is 70, you would add 70 + 70, along with the length, 110 + 110. This gives you a perimeter of 360.
Answer:
6x-3y+2
Step-by-step explanation:
I AM BIG BRAIN
0101010101010101010101010101010101010101
Answer:
Boxplot is constructed using quartiles and 5 No. summary means including minimum value of data, 1st quartile, 2nd quartile, 3rd quartile and maximum value of data.
As data already in increasing order, we find quartiles using the following formula,

where n = No. of Observations.
∴, 1st Quartile,

2nd Quartile,

3rd Quartile,

Minimum value of data = 32 & Maximum value of data = 99
So, Values of 5 no. that are to ne include in Boxplot are 32, 55.5, 69.5, 80.5, 99.
BoxPlot is attached with this ans.