Chlorine-the chemical element of atomic number 17, a toxic, irritant, pale green gas
atomic number-the number of protons in the nucleus of an atom, which determines the chemical properties of an element and its place in the periodic table.
Answer:
This question is incomplete
Explanation:
Experimentally, when trying to determine the concentration of an unknown sample of CuSO₄ with known absorbance, a standard curve is used. The standard curve is a scattered plot/graph in which known concentrations and there respective/corresponding absorbance are plotted on a "X and Y axis" graph (scattered plot). The absorbance is represented on the y-axis while the concentration is represented on the x-axis.
Once this known values are plotted on the standard curve, an unknown value (either absorbance or concentration) can be extrapolated from the curve. What is missing from the question is data required for the standard curve.
This question shows the absorbance of the CuSO₄ has been determined (most likely using spectrophotometer), the concentration could have been extrapolated from a standard curve.
An example of a standard curve is provided in the attachment for guidance.
After meiosis you are left with 23
Shskdkdjfkkgg
Jsjdkfodkdjdkdkfkf
Jsjdkfkfkfjfkf
The noncyclic pathway is a FLOW of electrons from water, to photosystem II, to PHOTOSYSTEM I to NADPH. Energy is released as ELECTRONS move through the first electron transfer chain. This energy pumps HYDROGEN IONS into the thylakoid compartment, and then they power the formation of ATP as they flow back out. Sunlight provides the energy needed to keep this cycle going.
----------------------------------------------------------------------------------------------------
- Luminous energy is trapped by chlorophyll in Photosystem II.
- When the pigment molecules absorb light, electrons provided by water molecules get in a higher energy level.
- The excited electrons go through the electron transport chain from Photosystem II to a less energetic level in photosystem I.
- <em>When the excited electrons leave photosystem II, they are replaced by new electrons extracted from the water molecules. </em>
- Luminous energy absorbed move the electrons from the photosystem I to another electron acceptor, from where they get transported again and used to produce NADPH molecules.
- <em>When electrons leave Photosystem I, they are replaced by new electrons coming from photosystem II. </em>
- When the water molecule breaks down, hydrogen ions remain in the thylakoid lumen, from where they are pumped to the stroma by the ATP synthase.
- The released energy is used to produce ATP molecules.
- Hydrogen ions go back from the stroma to the thylakoid compartment.
The final products are oxygen, ATP, and NADPH.
--------------------------------------------
Related Link: brainly.com/question/13592516?referrer=searchResults