I'm pretty sure its B or C. Sorry, hope this helped some....??
Partial pressure O2 = total pressure - vapour pressure H2O at 50 deg C
Vapour pressure H2O at 50 deg C = 12.332 kPa
= 96.00 kPa - 12.332 kPa = 83.67 kPa
The RMS of O2 at 17 degrees is calculated as follows
RMs= ( 3RT/m)^1/2 where
R= ideal gas constant = 8.314
T= temperature= 17+273= 290 K
M= molar mass in KG = 32/1000= 0.032 Kg
Rms is therefore= sqrt (3x 8.314 x290/0.032 ) = sqrt( 226036.875
RMs=475.43
Answer:
0.36 M
Explanation:
There is some info missing. I think this is the complete question.
<em>Suppose a 250 mL flask is filled with 0.30 mol of N₂ and 0.70 mol of NO. The following reaction becomes possible:
</em>
<em>N₂(g) +O₂(g) ⇄ 2 NO(g)
</em>
<em>The equilibrium constant K for this reaction is 7.70 at the temperature of the flask. Calculate the equilibrium molarity of O₂. Round your answer to two decimal places.</em>
<em />
Initially, there is no O₂, so the reaction can only proceed to the left to attain equilibrium. The initial concentrations of the other substances are:
[N₂] = 0.30 mol / 0.250 L = 1.2 M
[NO] = 0.70 mol / 0.250 L = 2.8 M
We can find the concentrations at equilibrium using an ICE Chart. We recognize 3 stages (Initial, Change, and Equilibrium) and complete each row with the concentration or change in the concentration.
N₂(g) +O₂(g) ⇄ 2 NO(g)
I 1.2 0 2.8
C +x +x -2x
E 1.2+x x 2.8 - 2x
The equilibrium constant (K) is:
![K=7.70=\frac{[NO]^{2}}{[N_{2}][O_{2}]} =\frac{(2.8-2x)^{2} }{(1.2+x).x}](https://tex.z-dn.net/?f=K%3D7.70%3D%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%20%3D%5Cfrac%7B%282.8-2x%29%5E%7B2%7D%20%7D%7B%281.2%2Bx%29.x%7D)
Solving for x, the positive one is x = 0.3601 M
[O₂] = 0.3601 M ≈ 0.36 M
The answer is No. That is the mass of the sealed jar and its contents does not change upon the vaporization of the liquid, as according to the “law of conservation of mass” , the mass remain conserved when no matter is escape, the mass will remain constant and here also as the jar is sealed, no matter is escaped thus no mass change will be there.