Answer:
6.142 moles of NaCl
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2AlCl3 + 3Na2S —> Al2S3 + 6NaCl
Next, we determine the number of mole in 239.7 g of Na2S. This is illustrated below:
Mass mass of Na2S = 78.048g/mol
Mass of Na2S = 239.7g
Number of mole Na2S =..?
Mole = Mass /Molar Mass
Number of mole Na2S = 239.7/78.048 = 3.071 moles
Finally, we can obtain the number of mole of NaCl produced from the reaction as follow:
From the balanced equation above,
3 moles of Na2S reacted to produce 6 moles of NaCl.
Therefore, 3.071 moles of Na2S will react to produce = (3.071 x 6)/3 = 6.142 moles of NaCl
It has the most mass. but the electron cloud takes up the most space.
Write out the eqn of magnesium and oxygen. this should be under “metals” chapter. do revise.
next, find the mols of both oxygen and magnesium. compare the ratios and find the LIMITING REAGENT.
use the mols of the limiting reagent to compare with the mols of the product.
take the mols of the product/mr of the product.
this will give u the mass.
Answer:
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Explanation:
Let's write out the chemical equation between Nitrogen and Hydrogen to Form Ammonia.
Nitrogen + Hydrogen = Ammonia
N₂ + H₂ → NH₃
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH.
The balanced stoichiometric chemical equation is given as;
N₂ + 3H₂ → 2NH₃
92.2 kJ of energy are evolved for each mole of N2(g) that reacts. And from the equation, 1 mole of N2 reacts.
The enthalpy change, ΔH = - 92.2KJ. The negative sign is because heat is being evolved.
The balanced thermochemical equation;
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ