Element at Extreme Left In Periodic Table:
The elements of Group I-A (1) are present at extreme left of the periodic table. They are called as Alkali Metals. Alkali Metals are strong metals. These elements can easily loose their valence electron. The valence shell electronic configuration of these elements is,
ns¹
where n is principle quantum number, which shows main energy level or shell. These metals can gain Noble gas configuration (stable configuration) either by loosing one electron or by gaining seven or more electrons. As it is quite reasonable to loose one electron instead of gaining seven or more electrons so these element easily loose one electron to gain noble as configuration. The Metallic character decreases along the period from left to right. So Group II-A (2) are second most metallic elements and so on. These metals at extreme left mainly exist in solid form.
Element at Extreme Right In Periodic Table:
Elements present at extreme right of the periodic table lacks the properties of metallic character and act as non-Metals. They have almost complete outermost shell or have the deficiency of one or two electrons. They are not as hard as metallic elements and they exist with complete octet like in Noble gases, or deficient with one electron (Halogens) or two electrons (oxygen group). These elements tend to gain or accept electron if their valence shell is deficient with required number of elements. Like the valence electronic configuration of Halogens is,
ns², np⁵
So, Halogens readily accept one electron and attain noble gas configuration. Elements at extreme left exist mainly in gas phase.
Answer:
D. In both, vibrations occur in a parallel direction to the direction of the wave.
Explanation:
It is not true that in both mechanical and electromagnetic waves, vibrations occur in parallel direction to the direction of the wave.
As with all waves, they are disturbances that transfers energy without moving the materials of the medium.
- Electromagnetic waves have only one way of propagation which is a vibration in both parallel and longitudinal direction.
- Mechanical waves can be propagated either in a parallel direction or longitudinal direction and not both.
It is important to note that mass and mole pertain to different units of measurement, thus, 1 mole of one substance may have a lower or higher mass compared to a different substance. The mass of an object gives a measure of the number of atoms present in the substance while the number of moles of a substance refers to the amount of a chemical substance it has and is often used for chemical reactions.
For this problem, we first get the molar mass of each substance:
Molar mass of H2O = 18.0153 g/mol
Molar mass of C6H12O6 = 180.1559 g/mol
We then convert each substance into units of mass (grams), where:
1 mol H20 x 18.0153 g/mol = 18.0153 g H20
1 mol C6H12O6 x 180.1559 g/mol = 180.1559 g C6H12O6
It was then determined that 1 mole of glucose has more mass than 1 mole of water.
Answer:
The third one
Explanation:
Nickel-62 has the highest binding energy per nucleon of any isotope for any element. Isotopes heavier than 62Ni cannot be formed by nuclear fusion without losing energy.