Answer:
Final temperature = T₂ = 155.43 °C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of coin = 4.50 g
Heat absorbed = 54 cal
Initial temperature = 25 °C
Specific heat of copper = 0.092 cal/g °C
Final temperature = ?
Solution:
Q = m.c. ΔT
ΔT = T₂ -T₁
Q = m.c. T₂ -T₁
54 cal = 4.50 g × 0.092 cal/g °C × T₂ -25 °C
54 cal = 0.414 cal/ °C × T₂ -25 °C
54 cal /0.414 cal/ °C = T₂ -25 °C
130.43 °C = T₂ -25 °C
130.43 °C + 25 °C = T₂
155.43 °C = T₂
Ernest Shackleton's South! primarily uses the writing structure of "problem and solution".
Answer:
The mass number of an atom is equal to the number of protons plus the number of neutrons that it contains. In other words, the number of neutrons in an atom is its mass number minus its atomic number.
Explanation:
protons
The mass number of an atom is its total number of protons and neutrons. Atoms of different elements usually have different mass numbers , but they can be the same. For example, the mass number of argon atoms and calcium atoms can both be 40.
Answer:
The process of elemental stratification relies on the diffusion velocity, which causes the migration of the different chemical elements within stars.
Explanation:
Consider you have a mixture of amino acids(contains all set of amino acids such as polar, non polar). Other than TLC, how are you supposed to separate a single amino acid from the mixture without loss of amino acid quantitatively.