Answer:
The midrange of the data set shown is 85
Step-by-step explanation:
This is the answer of this question.
<span>First we have to find the sum and the difference of those polynomials- The sum is: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) + ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5 - 2 x^3y^4 - 7xy^3 - 8 x^5y + 2 x^3y^4 + xy^3 = - 5 x^5y - 6 xy^3. And the difference: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) - ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5y - 2 x^3y^4 - 7 xy^3 + 8 xy^5 - 2 x^3y^4 - xy^3 = 11 xy^5 - 4 x^3y^4 - 8xy^3. The highest exponent in both polynomials is 5. Answer: The degree of the polynomials is 5.</span>
9 is the answer for that problem