Answer:
X+6
Step-by-step explanation:
Combined like terms.
Answer:
first one i believe
Step-by-step explanation:
The answer is f(x)=x²+2x when evaluated with -3 gives you the value of 3
Let's check all functions.
1. The function f(x)=x²<span>+2x when evaluated with 3 gives you the value of 3:
Evaluated with x means that</span> x = 3.
f(3) = 3² + 2 * 3 = 9 + 6 = 15
15 ≠ 3, so, this is not correct.
2. f(x)=x²<span>-3x when evaulated with -3 give you the value of 3
Evaluated with -3 means that x = -3.
(f-3) = (-3)</span>² - 3 * (-3) = 9 + 9 = 18
18 ≠ 3, so, this is not correct.
3. f(x)=x²<span>+2x when evaluated with -3 gives you the value of 3
</span> Evaluated with -3 means that x = -3.
f(-3) = (-3)² + 2 * (-3) = 9 - 6 = 3
3 = 3, so this is correct.
4. f(x)=x²-3x when evaluated with -3 gives you the value of 3
Evaluated with 3 means that x = 3.
f(3) = (3)² - 3 * 3 = 9 - 9 = 0
0 ≠ 3, so this is not correct.
The fundamental theorem of algebra states that a polynomial with degree n has at most n solutions. The "at most" depends on the fact that the solutions might not all be real number.
In fact, if you use complex number, then a polynomial with degree n has exactly n roots.
So, in particular, a third-degree polynomial can have at most 3 roots.
In fact, in general, if the polynomial
has solutions
, then you can factor it as

So, a third-degree polynomial can't have 4 (or more) solutions, because otherwise you could write it as

But this is a fourth-degree polynomial.
Answer:
m∠1=80°, m∠2=35°, m∠3=33°
Step-by-step explanation:
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
step 1
Find the measure of angle 1
In the triangle that contain the interior angle 1
∠1+69°+31°=180°
∠1+100°=180°
∠1=180°-100°=80°
step 2
Find the measure of angle 2
In the small triangle that contain the interior angle 2
∠2+45°+(180°-∠1)=180°
substitute the value of angle 1
∠2+45°+(180°-80°)=180°
∠2+45°+(100°)=180°
∠2+145°=180°
∠2=180°-145°=35°
step 3
Find the measure of angle 3
In the larger triangle that contain the interior angle 3
(∠3+31°)+69°+47°=180°
∠3+147°=180°
∠3=180°-147°=33°