The formula of a distance between A and B = |B - A|.
We have -3 and 4. Substitute:
|4 - (-3)| = |4 + 3| = |7| = 7
<h3>Answer: d) 7</h3>
I will explain you and pair two of the equations as an example to you. Then, you must pair the others.
1) Two circles are concentric if they have the same center and different radii.
2) The equation of a circle with center xc, yc, and radius r is:
(x - xc)^2 + (y - yc)^2 = r^2.
So, if you have that equation you can inmediately tell the coordinates of the center and the radius of the circle.
3) You can transform the equations given in your picture to the form (x -xc)^2 + (y -yc)^2 = r2 by completing squares.
Example:
Equation: 3x^2 + 3y^2 + 12x - 6y - 21 = 0
rearrange: 3x^2 + 12x + 3y^2 - 6y = 21
extract common factor 3: 3 (x^2 + 4x) + 3(y^2 -2y) = 3*7
=> (x^2 + 4x) + (y^2 - 2y) = 7
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 7
=> (x + 2)^2 + (y - 1)^2 = 12 => center = (-2,1), r = √12.
equation: 4x^2 + 4y^2 + 16x - 8y - 308 = 0
rearrange: 4x^2 + 16x + 4y^2 - 8y = 308
common factor 4: 4 (x^2 + 4x) + 4(y^2 -8y) = 4*77
=> (x^2 + 4x) + (y^2 - 2y) = 77
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 77
=> (x + 2)^2 + (y - 1)^2 = 82 => center = (-2,1), r = √82
Therefore, you conclude that these two circumferences have the same center and differet r, so they are concentric.
Answer:
Step-by-step explanation:
number of columns of A=number of rows of B
number of rows of A=number of rows of C
Answer:
its b
Step-by-step explanation:
its b i for some reason got it right
Answer:
(First step for obtaining a common denominator for the two fraction)

Step-by-step explanation:

where,
a is acceleration of an object.(Need to calculate)





Now we will simplify above expression for a
First we make common denominator.
Common denominator is 7. So, we make both denominator 7. We multiply by 7 at top and bottom with 3. We get
(First step for obtaining a common denominator for the two fraction)
Now we combine the numerator

