1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
2 years ago
5

I️ have travelled around 75% of the edge of a circular path for 10 miles. What is the diameter of the circular path

Mathematics
1 answer:
KonstantinChe [14]2 years ago
5 0
The circumference of a circle is equal to pi * diameter

So 10 miles = 0.75 * pi * d

10/(0.75*pi) = d

d = <span>4.244 miles</span>
You might be interested in
Does anyone know how to do this???
Vera_Pavlovna [14]

Answer:

yes

Step-by-step explanation:

you must first see what spinners says then you follow what spinners says

6 0
2 years ago
i f N(-7,-1) is a point on the terminal side of ∅ in standard form, find the exact values of the trigonometric functions of ∅.
Natali [406]

Answer:

sin\ \varnothing = \frac{-1}{10}\sqrt 2

cos\ \varnothing = \frac{-7}{10}\sqrt 2

tan\ \varnothing = \frac{1}{7}

cot\ \varnothing = 7

sec\ \varnothing = \frac{-5}{7}\sqrt 2

csc\ \varnothing = -5\sqrt 2

Step-by-step explanation:

Given

N = (-7,-1) --- terminal side of \varnothing

Required

Determine the values of trigonometric functions of \varnothing.

For \varnothing, the trigonometry ratios are:

sin\ \varnothing = \frac{y}{r}       cos\ \varnothing = \frac{x}{r}       tan\ \varnothing = \frac{y}{x}

cot\ \varnothing = \frac{x}{y}       sec\ \varnothing = \frac{r}{x}       csc\ \varnothing = \frac{r}{y}

Where:

r^2 = x^2 + y^2

r = \sqrt{x^2 + y^2

In N = (-7,-1)

x = -7 and y = -1

So:

r = \sqrt{(-7)^2 + (-1)^2

r = \sqrt{50

r = \sqrt{25 * 2

r = \sqrt{25} * \sqrt 2

r = 5 * \sqrt 2

r = 5 \sqrt 2

<u>Solving the trigonometry functions</u>

sin\ \varnothing = \frac{y}{r}

sin\ \varnothing = \frac{-1}{5\sqrt 2}

Rationalize:

sin\ \varnothing = \frac{-1}{5\sqrt 2} * \frac{\sqrt 2}{\sqrt 2}

sin\ \varnothing = \frac{-\sqrt 2}{5*2}

sin\ \varnothing = \frac{-\sqrt 2}{10}

sin\ \varnothing = \frac{-1}{10}\sqrt 2

cos\ \varnothing = \frac{x}{r}

cos\ \varnothing = \frac{-7}{5\sqrt 2}

Rationalize

cos\ \varnothing = \frac{-7}{5\sqrt 2} * \frac{\sqrt 2}{\sqrt 2}

cos\ \varnothing = \frac{-7*\sqrt 2}{5*2}

cos\ \varnothing = \frac{-7\sqrt 2}{10}

cos\ \varnothing = \frac{-7}{10}\sqrt 2

tan\ \varnothing = \frac{y}{x}

tan\ \varnothing = \frac{-1}{-7}

tan\ \varnothing = \frac{1}{7}

cot\ \varnothing = \frac{x}{y}

cot\ \varnothing = \frac{-7}{-1}

cot\ \varnothing = 7

sec\ \varnothing = \frac{r}{x}

sec\ \varnothing = \frac{5\sqrt 2}{-7}

sec\ \varnothing = \frac{-5}{7}\sqrt 2

csc\ \varnothing = \frac{r}{y}

csc\ \varnothing = \frac{5\sqrt 2}{-1}

csc\ \varnothing = -5\sqrt 2

3 0
3 years ago
Solve the following differential equation using using characteristic equation using Laplace Transform i. ii y" +y sin 2t, y(0) 2
kifflom [539]

Answer:

The solution of the differential equation is y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

Step-by-step explanation:

The differential equation is given by: y" + y = Sin(2t)

<u>i) Using characteristic equation:</u>

The characteristic equation method assumes that y(t)=e^{rt}, where "r" is a constant.

We find the solution of the homogeneus differential equation:

y" + y = 0

y'=re^{rt}

y"=r^{2}e^{rt}

r^{2}e^{rt}+e^{rt}=0

(r^{2}+1)e^{rt}=0

As e^{rt} could never be zero, the term (r²+1) must be zero:

(r²+1)=0

r=±i

The solution of the homogeneus differential equation is:

y(t)_{h}=c_{1}e^{it}+c_{2}e^{-it}

Using Euler's formula:

y(t)_{h}=c_{1}[Sin(t)+iCos(t)]+c_{2}[Sin(t)-iCos(t)]

y(t)_{h}=(c_{1}+c_{2})Sin(t)+(c_{1}-c_{2})iCos(t)

y(t)_{h}=C_{1}Sin(t)+C_{2}Cos(t)

The particular solution of the differential equation is given by:

y(t)_{p}=ASin(2t)+BCos(2t)

y'(t)_{p}=2ACos(2t)-2BSin(2t)

y''(t)_{p}=-4ASin(2t)-4BCos(2t)

So we use these derivatives in the differential equation:

-4ASin(2t)-4BCos(2t)+ASin(2t)+BCos(2t)=Sin(2t)

-3ASin(2t)-3BCos(2t)=Sin(2t)

As there is not a term for Cos(2t), B is equal to 0.

So the value A=-1/3

The solution is the sum of the particular function and the homogeneous function:

y(t)= - \frac{1}{3} Sin(2t) + C_{1} Sin(t) + C_{2} Cos(t)

Using the initial conditions we can check that C1=5/3 and C2=2

<u>ii) Using Laplace Transform:</u>

To solve the differential equation we use the Laplace transformation in both members:

ℒ[y" + y]=ℒ[Sin(2t)]

ℒ[y"]+ℒ[y]=ℒ[Sin(2t)]  

By using the Table of Laplace Transform we get:

ℒ[y"]=s²·ℒ[y]-s·y(0)-y'(0)=s²·Y(s) -2s-1

ℒ[y]=Y(s)

ℒ[Sin(2t)]=\frac{2}{(s^{2}+4)}

We replace the previous data in the equation:

s²·Y(s) -2s-1+Y(s) =\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)-2s-1=\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)=\frac{2}{(s^{2}+4)}+2s+1=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)}

Y(s)=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)(s^{2}+1)}

Y(s)=\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}

Using partial franction method:

\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}=\frac{As+B}{s^{2}+4} +\frac{Cs+D}{s^{2}+1}

2s^{3}+s^{2}+8s+6=(As+B)(s²+1)+(Cs+D)(s²+4)

2s^{3}+s^{2}+8s+6=s³(A+C)+s²(B+D)+s(A+4C)+(B+4D)

We solve the equation system:

A+C=2

B+D=1

A+4C=8

B+4D=6

The solutions are:

A=0 ; B= -2/3 ; C=2 ; D=5/3

So,

Y(s)=\frac{-\frac{2}{3} }{s^{2}+4} +\frac{2s+\frac{5}{3} }{s^{2}+1}

Y(s)=-\frac{1}{3} \frac{2}{s^{2}+4} +2\frac{s }{s^{2}+1}+\frac{5}{3}\frac{1}{s^{2}+1}

By using the inverse of the Laplace transform:

ℒ⁻¹[Y(s)]=ℒ⁻¹[-\frac{1}{3} \frac{2}{s^{2}+4}]-ℒ⁻¹[2\frac{s }{s^{2}+1}]+ℒ⁻¹[\frac{5}{3}\frac{1}{s^{2}+1}]

y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

3 0
3 years ago
Some number minus 3 is equal to the product of the number and 12
nikklg [1K]

Answer:

x-3=x+12

Step-by-step explanation:

because some number is x minus 3 would be x-3 is equal to so put an equal sign the product of the number x and 12

8 0
3 years ago
Mr. Thompson had a balance of $283.12 in his checking account at the beginning of the month he wrote checks for $23.09 $7.56 $12
ryzh [129]

Account balance is $123.08

Step-by-step explanation:

  • Step 1: Balance in Thompson's account = $283.12. Calculate the total amount of checks Thompson wrote in the month.

Total amount of checks = $23.09 + $7.56 + $125.11 + $4.28

                                        = $160.04

  • Step 2: Calculate his balance.

Account balance = $283.12 - $160.04

                            = $123.08

8 0
2 years ago
Other questions:
  • Uncle Jason is twice as old as his nephew Ralph, and 10 years ago he was three times as old as Ralph. Find their present ages.
    7·1 answer
  • Which number line represents the solutions x+4=2
    15·1 answer
  • Helppppppppppppppppppppppppppp
    5·2 answers
  • Can someone please help me with this question
    12·2 answers
  • ◆ Quadratic Equations ◆<br>Please help !
    14·1 answer
  • 2 7/9 times 2 1/5 in simplest form
    7·1 answer
  • Use the ratio table to solve the percent problem. What is 30% of 50. ​
    13·2 answers
  • Match the absolute value equation with its graph without solving the equation.<br><br> |x+2|=4
    13·2 answers
  • Mr. Garner’s gas tank holds 17.5 gallons of gasoline. How much will it cost him to fill up his gas tank if gasoline costs $2.48
    9·1 answer
  • What is the inequality represented by this graph? (pls help its worth 30 points and ill give brainliest if ur correct :D)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!