An element with a mass of 970 g decays by 15.1% per minute how much of the element remaining after 14 minutes
2 answers:
Answer:
The answer is 98.1
Step-by-step explanation:
Exponential Functions:
y=ab^x
a=starting value = 970
r=rate = 15.1%=0.151
Exponential Decay:
b=1-r=1-0.151=0.849
Write Exponential Function:
y=970(0.849)^x
Plug in time for x:
y=970(0.849)^{14}
y= 98.05718
Evaluate
y≈98.1
The amount of the element remaining (y) in grams after time (t) in minutes is defined by the equation y=970(1-.151)^t. Substitute t=14 into the equation and solve for y. y=970(.849)^14=98.06 rounded to two decimal places.
You might be interested in
The surface area is 6075.96 in^3
Aplicando la función , los valores numéricos son
:
La función es dada por:
Para los valores numéricos , reemplazamos x, luego:
Un problema similar es dado en brainly.com/question/7037337
24 as 160÷10=16 160-16=144 144÷6=24
hope it helps you.........