Answer:
Hi. im an online tutor and i can assist you with your assignments. check out toplivewriters.com for support
Step-by-step explanation:
Very simple.
Let's say you have an equation.
f(x) = x^2
You are asked to find the value for y when x equals 1.
The new equation is: f(1) = (1)^2
f(1) = 1
When x = 1, y = 1.
The same concept is applied here.
In the graph, where does x equal 0?
It equals zero at the origin.
Is there any y-value associated with 0?
Yes, there is.
Y equals five when x equals 0.
So
h(0) = 5
Rewrite <span>88</span> as <span><span><span>22</span>⋅2</span><span><span>22</span>⋅2</span></span>.Factor <span>44</span> out of <span>88</span>.<span><span>√<span>4<span>(2)</span></span></span><span>42</span></span>Rewrite <span>44</span> as <span><span>22</span><span>22</span></span>.<span><span>√<span><span>22</span>⋅2</span></span><span><span>22</span>⋅2</span></span>Pull terms out from under the radical.<span><span>2<span>√2</span></span><span>22</span></span>The result can be shown in both exact and decimal forms.Exact Form:<span><span>2<span>√2</span></span><span>22</span></span>Decimal Form:<span>2.82842712<span>…</span></span>
Answer:
R = ![\left[\begin{array}{ccc}-3&-2\\1&-3\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-2%5C%5C1%26-3%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
P - Q + R = I ( I is the identity matrix )
-
+ R =
( subtract corresponding elements )
+ R = ![\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
+ R = ![\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
R =
-
= ![\left[\begin{array}{ccc}-3&-2\\1&-3\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-2%5C%5C1%26-3%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Answer:
48
Step-by-step explanation:
because 20% of 240 is 48.