Answer:
Step-by-step explanation:
If BOTH equations are in slope-intercept form then the-graphing-? method would be best, but the-substitution-? method would also be effective since both y's are already by itself.
If ONE of the equations is solved for x or y and the other equation is not, then the-substitution-? method is best.
If BOTH equations are lined up in standard form & the coefficients of x or y are opposites then the BEST method is definitely the-elimination--? method.
If BOTH equations are lined up in standard form the elimination method would be best. But if the coefficient of x or y is 1, then the-substitution--? method is also effective.
Answer:
0.5,1.2,23,-34,-73
Step-by-step explanation:
Im pretty sure the answer is 92.0 becauese
if you do 10.5x3.5 5x5=25 5x0+2=7 5x1=5 so that will be 57.5 then your going to do 3x5=15 3x0+1=4 3x1=3 that equals 34.5 then your going to add 57.5 +34.5
= 92.0
Answer:
4
Step-by-step explanation:
2+2=4
Step-by-step explanation:
multiple possibilities.
e.g.
we could use Pythagoras to get QR, and then use the law of sine to get angle P.
or we can use the law of sine to get angle R, and then use the rule that the sum of all angles in a triangle is always 180° to get angle P.
I propose the second option :
the law of sine :
a/sin(A) = b/sin(B) = c/sin(C)
with a, b, c being the sides always opposite of their associated angles.
33.8/sin(R) = 57.6/sin(90) = 57.6
sin(R) = 33.8/57.6 = 0.586805555...
R = 35.93064691...°
180 = 90 + 35.93064691... + P
P = 54.06935309...°