Answer:

Step-by-step explanation:
STEP 1:
2/3 + 7/10 = ?
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(2/3, 7/10) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.
*
+
= ?
Complete the multiplication and the equation becomes

The two fractions now have like denominators so you can add the numerators.
Then:

This fraction cannot be reduced.
The fraction 41/30
is the same as
41 divided by 30
Convert to a mixed number using
long division for 41 ÷ 30 = 1R11, so
41/30 = 1 11/30
Therefore:
2/3+7/10= 1 11/30
STEP 2:
41/30 + -2/3
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(41/30, -2/3) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.

The two fractions now have like denominators so you can add the numerators.
Then:

This fraction can be reduced by dividing both the numerator and denominator by the Greatest Common Factor of 21 and 30 using
GCF(21,30) = 3

Therefore:
|
Answer:
Total amount = R5112
Step-by-step explanation:
Let the cooks be C.
Let the waiters be W.
Given the following data;
Number of cooks, C = 2
Number of waiters, W = 3
a. To find the amount earned by each cook;
C = 36 * R36 = R1296
b. To find the amount earned by each waiter;
W = 30 * R28 = R840
c. To find the total amount earned by the employees;
Total amount = 2C + 3W
Total amount = 2(1296) + 3(840)
Total amount = 2592 + 2520
Total amount = R5112
Answer:
infinite
Step-by-step explanation:
Answer:
<em>LCM</em> = 
Step-by-step explanation:
Making factors of 
Taking
common:

Using <em>factorization</em> method:

Now, Making factors of 
Taking
common:

Using <em>factorization</em> method:

The underlined parts show the Highest Common Factor(HCF).
i.e. <em>HCF</em> is
.
We know the relation between <em>LCM, HCF</em> of the two numbers <em>'p' , 'q'</em> and the <em>numbers</em> themselves as:

Using equations <em>(1)</em> and <em>(2)</em>:

Hence, <em>LCM</em> = 
What kind of problems or what are you trying to ask?