Answer:
x - 3 > 10
There were more than
13
board games in Anne's cabinet to start.
Step-by-step explanation:
The variable x represents how many board games were in Anne's cabinet to start. Since she has already picked out 3 board games to bring, the expression x–3 represents how many board games are still in the cabinet.
And, since Anne has more than 10 board games still in her cabinet, x–3 must be greater than 10.
This inequality shows the relationship.
x–3>10
Now, solve for x.
x–3
> 10
x–3+3
> 10+3 Add 3 to both sides
x
> 13 Simplify
So, there were more than 13 board games in Anne's cabinet to start.
I'm assuming that you meant:
y = 7x² + 3
Remember! Inputs are always x values (unless stated otherwise). Meaning the problem says:
x = 4
y = 7(4)² + 3
The square only applies to the 4. The 7 is not going to be squared! (To be exact it only applies to whatever the value of x is.
4² = 4·4 = 16
Remember:
Parenthesis
Exponents
Multiplication
Division
Addition
Subtraction
Follow PEMDAS from left to right (or in the case above from top to bottom).
7·16 + 3 = ?
16·7 = 10·7 + 6·7 = 70 + 42 = 112
(All I did to multiply was break it up into parts. If it confuses you don't worry about it, and just multiply it out like normal or use a calculator if you are allowed to)
112 + 3 = ?
Our output is:
115!
First set change the function f(x) to y so
that it would be

Then set y = 0

Then solve for x
X = - 3
To graph it, just plot the point (-3,0) on the x-axis
Answer:
360
Step-by-step explanation:
You can solve this by doing 18 times 20 is 360: and then dividing 360 by 18, results in 20.
I'll do the first two problems to get you started. All problems shown will use the same formula.
===========================================
Problem 4
The formula to use is
C = 100*(B-A)/A
where
A = old value
B = new value
C = percent change
In this case, A = 12 and B = 36, so
C = 100*(B-A)/A
C = 100*(36-12)/12
C = 100*(24/12)
C = 100*2
C = 200%
We have a 200% increase. It is an increase because the value of C is positive.
===========================================
Problem 5
Use the same formula as in the previous problem. This time,
A = 75 is the old value
B = 25 is the new value
C = 100*(B-A)/A
C = 100*(25-75)/75
C = 100*(-50/75)
C = 100*(-2/3)
C = -66.6667%
C = -66.7%
The value of C is negative, so we have a percent decrease of roughly 66.7%