Answer:
- (b) Her scale model drawing will not fit on a piece of paper that is 8.5 inches by 7 inches because the dimensions are not proportional to the scale.
Explanation:
(a) What is the length of the garden in her model? Show your work, including your proportion
<u>1. Scale</u>:
- model length / real length = 1 inch / 2 feet
<u>2. Proportion</u>:
Naming x the model length:
- 1 inch / 2 feet = x / 6 feet
Cross multiply:
- 1 inch × 6 feet = 2 feet × x
Divide both sides by x:
- x = 1 inch × 6 feet / 2 feet = 3 inch.
Answer: 3 inches
(b) If the width is 5 inches for the scale model and the scale is still 1 inch to 2 feet, will her scale model drawing fit on a piece of paper that is 8.5 inches by 7 inches? Why or why not?
Both the width and the length must use the same scale, thus the corresponding sides of the scale model and the drawing must be proportional.
In the model the ratio of the length to the width is 3 inch / 5 inch
In the paper the ratio of the length to the width is 8.5 inch / 7 inch
Hence, you can see that in the model the length (mumerator of the fraction) is less than the width (denominator) while in the paper it is the opposite. Bieng the two ratios different, they are not proportional, and you conclude that her scale model drawing will not fit on a piece of paper that is 8.5 inches by 7 inches.
Answer:
Part A:
-Minimum: 10
-Q1: 17.5
-Median: 30
-Q3: 42.5
-Maximum: 50
Step-by-step explanation:
Part B: IQR= 25
This shows that the data varies for 25 different numbers. That HALF of the data is between 25 numbers.
Part C: Using a box-and-whisker plot you can interpret the different values. Minimum is the first dot (10), connected to the first line (Q1 which is 17.5), connected by a box to the median (30), connected by a box to the third line (Q3 which is 42.5), connected to the last dot which is the maximum (50). And IQR is Q3-Q1, so 42.5-17.5 which is 25.
The correct answer it would be B
Ford
58 is 50 plus 8. So its 50 and 8.That is for the first one.
Answer:
the set of whole number since it is defined as positive integers + zero