Answer:


Step-by-step explanation:
Let the quotient be represented by 'Q'.
Given:
The difference of a number 'y' and 16 is 
Quotient is the answer that we get on dividing two terms. Here, the first term is 40 and the second term is
. So, we divide both these terms to get an expression for 'Q'.
The quotient of 40 and
is given as:

Now, we need to find the quotient when
. Plug in 20 for 'y' in the above expression and evaluate the quotient 'Q'. This gives,

Therefore, the quotient is 10, when the value of 'y' is 20.
HCF of 8 that will go as much as possible to 33
4*8=32 and denominator is 8
33-32=1 which is the numerator
Answer is :
4 1/8
Answer:
B 71 & 71
Step-by-step explanation:
OP is an angle bisector
Answer:
-8 ≤ y ≤ 8
Step-by-step explanation:
Subtract 7 from the first one:
y ≥ -8
Subtract 3 from the second one, then multiply by 4.
y/4 ≤ 2
y ≤ 8
Now, you can write these as a compound inequality:
-8 ≤ y ≤ 8
_____
<em>Additional comment</em>
You basically solve these the same way you would an equation. The only difference is that multiplying or dividing by a negative number will reverse the inequality symbol:
2 > 1
-2 < -1 . . . . . multiplied above by -1.
Answer:
Step-by-step explanation:
Part 1:
Let
Q₁ = Amount of the drug in the body after the first dose.
Q₂ = 250 mg
As we know that after 12 hours about 4% of the drug is still present in the body.
For Q₂,
we get:
Q₂ = 4% of Q₁ + 250
= (0.04 × 250) + 250
= 10 + 250
= 260 mg
Therefore, after the second dose, 260 mg of the drug is present in the body.
Now, for Q₃ :
We get;
Q₃ = 4% of Q2 + 250
= 0.04 × 260 + 250
= 10.4 + 250
= 260.4
For Q₄,
We get;
Q₄ = 4% of Q₃ + 250
= 0.04 × 260.4 + 250
= 10.416 + 250
= 260.416
Part 2:
To find out how large that amount is, we have to find Q₄₀.
Using the similar pattern
for Q₄₀,
We get;
Q₄₀ = 250 + 250 × (0.04)¹ + 250 × (0.04)² + 250 × (0.04)³⁹
Taking 250 as common;
Q₄₀ = 250 (1 + 0.04 + 0.042 + ⋯ + 0.0439)
= 2501 − 0.04401 − 0.04
Q₄₀ = 260.4167
Hence, The greatest amount of antibiotics in Susan’s body is 260.4167 mg.
Part 3:
From the previous 2 components of the matter, we all know that the best quantity of the antibiotic in Susan's body is regarding 260.4167 mg and it'll occur right once she has taken the last dose. However, we have a tendency to see that already once the fourth dose she had 260.416 mg of the drug in her system, that is simply insignificantly smaller. thus we will say that beginning on the second day of treatment, double every day there'll be regarding 260.416 mg of the antibiotic in her body. Over the course of the subsequent twelve hours {the quantity|the quantity|the number} of the drug can decrease to 4% of the most amount, that is 10.4166 mg. Then the cycle can repeat.