Answer:
Movement of Electrons in opposite direction of the rotation of the pickup coil leads to the direction of Electrical energy ( Alternating current ).
Explanation:
For a Generator to generate electricity, Electrons that is found in the rotating coil of the Generator will experience some sort of force that makes them to start moving in a direction that is perpendicular to the direction of the rotating/pickup coil found in the Generator.
The conversion of mechanical energy (Rotation of the pickup coil ) to electrical energy takes place in the Generator
The generator makes an alternating current because electrons move in opposite direction of the rotating coil
In other to generate a Direct current using a generator we have to replace the slip rings with commutator.
Volume isn't a property of matter at all. You can have a big lump or a tiny lump of the same substance.
When light passes from one medium to another, part of it continues on
into the new medium, while the rest of it bounces away from the boundary,
back into the first medium.
The part of the light that continues on into the new medium is <em>transmitted</em>
light. Its forward progress at any point in its journey is <em>transmission</em>.
Its direction usually changes as it crosses the boundary. The bending is <em>
refraction</em>.
The part of the light that bounces away from the boundary and heads back
into the first medium is <em>reflected</em> light. The process of bouncing is <em>reflection</em>.
Answer:
1.84 m from the initial point (3.16 m from the ceiling)
Explanation:
According to the law of conservation of energy, the initial kinetic energy of the ball will be converted into gravitational potential energy at the point of maximum height.
Therefore, we can write:

where
m = 2 kg is the mass of the ball
v = 6 m/s is the initial speed of the ball
g = 9.8 m/s^2 is the acceleration due to gravity
is the change in height of the ball
Solving for
,

So, the ball raises 1.84 compared to its initial height.
Therefore:
- if we take the initial position of the ball as reference point, its maximum height is at 1.84 m
- if we take the ceiling as reference point, the maximum height of the ball will be
5 m - 1.84 m = 3.16 m from the ceiling