1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
3 years ago
9

15 grams of liquid plastic are frozen in a physical change that increases the volume. What can be known about the plastic after

the change?
Physics
1 answer:
julsineya [31]3 years ago
3 0
Less energy than started with
You might be interested in
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen
Misha Larkins [42]

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
6 0
3 years ago
How does the thickness of the lens affects its focal length plz ans this i will mark as brainliest
Oksanka [162]

Hello! :)

The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.

Hope I helped and didn’t answer too late!

Good luck and stay COOL!

~ Destiny ^_^

5 0
3 years ago
The horizontal force exerted between the tires of a 500kg car and the ground is 980N. if the car starts from rest, how far will
Maksim231197 [3]

Answer:

Explanation:

d = ½at²

d = ½(F/m)t²

d = ½(980/500)5²

d = 24.5 m

6 0
2 years ago
Which type of erosion and deposition is most common in coastal areas around the Gulf of Mexico
Alja [10]
<span> most common in coastal areas around the gulf of mexico is mostly by river

</span>
7 0
3 years ago
Read 2 more answers
Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed o
kobusy [5.1K]

Answer:

\Delta \lambda=14.3\ nm

Explanation:

It is given that,

The number of lines per unit length, N = 900 slits per cm

Distance between the formed pattern and the grating, l = 2.3 m

n the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.98 mm, \Delta Y=2.98\ mm = 0.00298\ m

Let d is the slit width of the grating,

d=\dfrac{1}{N}

d=\dfrac{1}{900\ cm}

d=1.11\times 10^{-5}\ m

For the first wavelength, the position of maxima is given by :

y_1=\dfrac{L\lambda_1}{d}

For the other wavelength, the position of maxima is given by :

y_2=\dfrac{L\lambda_2}{d}

So,

\Delta \lambda=\dfrac{\Delta y d}{l}

\Delta \lambda=\dfrac{0.00298\times 1.11\times 10^{-5}}{2.3}

\Delta \lambda=1.43\times 10^{-8}\ m

or

\Delta \lambda=14.3\ nm

So, the difference between these wavelengths is 14.3 nm. Hence, this is the required solution.

3 0
3 years ago
Other questions:
  • A. If the rock weighs 1050 N, how far does the girl move her end of the lever if the lever is
    14·1 answer
  • Color is determined by: how high or how low the wave actually is the amplitude of the wave subjective transduction the length of
    14·2 answers
  • what branch of Science studies matter and energy and the way they work together with force to cause motion
    11·1 answer
  • Two critical requirements must be met before light elements, like hydrogen or helium, will fuse and form heavier elements. the t
    15·1 answer
  • The work output of a machine divided by the work input is the ____ of the machine.
    12·1 answer
  • A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 440 N
    8·1 answer
  • An alert physics student stands beside the tracks as a train rolls slowly past. He notes that the frequency of the train whistle
    13·1 answer
  • Tarzans mass is 75kg. calculate his weight
    14·1 answer
  • 2 Jim keeps a can on the ramp. The can
    11·1 answer
  • A pile driver of mass 5 tonnes falls from a height of 10m onto a pile of mass 8 tonnes There is no rebound on impact as the pile
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!