The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
so the 1st on is the one on the left, middle is right and the 3rd one is the right one
I changed my undershorts. The elastic on the old ones I put on that day was deteriorated, and it completely failed when I dripped lab coffee on it, causing falldown.
Answer:
3600N
Explanation:
Given: m = 1200kg, Vo = 0m/s, Vf = 30m/s, Δt = 10s
ΣF = ma
we need to find 'a' first, using the definition of 'a' we get equation:
a = (Vf-Vo)/Δt
a = (30m/s)/10s
a = 3 m/s^2
now substitute into top equation
ΣF = ma
Fengine = (1200kg)(3m/s^2)
Fengine = 3600N