12 because if you take 2 and add it to 10 you get 12
Answer:

And the best option would be:

Step-by-step explanation:
We assume that the distribution for the random variable is:

For this case we want to calculate the following probability:

And we can use the normal standard distribution or excel and we got:

And the best option would be:

Answer:
A, C and D are continuous
Step-by-step explanation:
A is a set of any number x which 30 < x <=45
B is a set that contains only 3 and 7
C is a set of any number x which 60 <= x < 100
D is a set of any number x which -infinity < x < + infinity
E is a set that contains only even whole numbers
A continuous data set is a quantitative data set representing a scale of measurement that can consist of numbers other than whole number, like decimals and fractions.
X=2h, y=3k
Substitute these values into equations.
y+2x = 4 ------> 3k+2*2h=4 -----> 3k +4h =4
2/y - 3/2x = 1-----> 2/3k -3/(2*2h) = 1 ------> 2/3k - 3/4h =1
We have a system of equations now.
3k +4h =4 ------> 3k = 4-4h ( Substitute 3k in the 2nd equation.)
2/3k - 3/4h =1
2/(4-4h) -3/4h = 1
2/(2(2-2h)) - 3/4h = 1
1/(2-2h) -3/4h - 1=0
4h/4h(2-2h) -3(2-2h)/4h(2-2h) - 4h(2-2h)/4h(2-2h) =0
(4h- 3(2-2h) - 4h(2-2h))/4h(2-2h) = 0
Numerator should be = 0
4h- 3(2-2h) - 4h(2-2h)=0
Denominator cannot be = 0
4h(2-2h)≠0
Solve equation for numerator=0
4h- 3(2-2h) - 4h(2-2h)=0
4h - 6+6h-8h+8h² =0
8h² +2h -6=0
4h² + h-3 =0
(4h-3)(h+1)=0
4h-3=0, h+1=0
h=3/4 or h=-1
Check which
4h(2-2h)≠0
1) h= 3/4 , 4*3/4(2-2*3/4)=3*(2-6)= -12 ≠0, so we can use h= 3/4
2)h=-1, 4(-1)(2-2*(-1)) =-4*4=-16 ≠0, so we can use h= -1, also.
h=3/4, then 3k = 4-4*3/4 =4 - 3=1 , 3k =1, k=1/3
h=-1, then 3k = 4-4*(-1) =8 , 3k=8, k=8/3
So,
if h=3/4, then k=1/3,
and if h=-1, then k=8/3 .
4x - 3y + 20 = 0....4x - 3y = -21
4x - 3y = -21.....multiply by -2
5x - 6y = -25
----------------
-8x + 6y = 42 (result of multiplying by -2)
5x - 6y = -25
---------------add
-3x = 17
x = -17/3
this system of equations has 1 solution