Answer:
a) p = 4.96 10⁻¹⁹ kg m / s
, b) p = 35 .18 10⁻¹⁹ kg m / s
,
c) p_correst / p_approximate = 7.09
Explanation:
a) The moment is defined in classical mechanics as
p = m v
Let's calculate its value
p = 1.67 10⁻²⁷ 0.99 3. 10⁸
p = 4.96 10⁻¹⁹ kg m / s
b) in special relativity the moment is defined as
p = m v / √(1 –v² / c²)
Let's calculate
p = 1.67 10⁻²⁷ 0.99 10⁸/ √(1- 0.99²)
p = 4.96 10⁻¹⁹ / 0.141
p = 35 .18 10⁻¹⁹ kg m / s
c) the relationship between the two values is
p_correst / p_approximate = 35.18 / 4.96
p_correst / p_approximate = 7.09
Answer:
75457.54816 N
Explanation:
= Initial force
= Weight of car = 11547.83 N
= Smaller radius = 5 cm
= Larger radius = 19.56 cm
From Pascal's law we have

The force is 754.57548 N
d = distance to which the grocery cart is pushed = 18 m
f = frictional force = 37.5 N
θ = angle of force below the horizontal = 27.5 deg
W = gravitational force in downward direction
Θ = angle between gravitational force in down direction and displacement in horizontal direction = 90
U = work done on the cart by gravitational force
work done on the cart by gravitational force is given as
U = W d CosΘ
inserting the values
U = W (18) Cos90
U = 0 J
Effect of balanced force'
*net force is zero
*no change in shape
*no change in size
*equal and opposite force
0.1 m/s^2 (final velocity-initial velocity) and then divide with the time taken