Refer to the diagram shown below.
Let m = the mass (g) of the door.
Let v = the launch velocity
Let u = the velocity of the door after impact.
Elastic impact (rubber ball):
The rubber ball bounces off the door with presumably elastic impact, which means that both momentum and kinetic energy are conserved.
Conservation of momentum requires that
400v = -400v + mu
Therefore

Inelastic impact (clay):
The clay sticks to the door after impact.
Conservation of momentum requires that
400g = (m+400)u
Therefore

When we compare magnitudes of u for the door, we find that

Clearly, the elastic impact creates a greater value of u for the door.
Answer:
The rubber ball creates a larger impulse to the door because the nature of its impact is approximately elastic.
100/2.5 is 40.
40 is the energy that is being produced
Answer:
E = 1000 x
Explanation:
The electric potential and the electric field are related by the formula
dV = - E . dx
Bold represents vectors.
The point represents the scalar product, in this case we calculate the electric field in the x-axis and the potential is also in this axis so the scalar product is reduced to the algebraic product
E = dV /dx
Let's make the derivative
E = - 2ax
Let's replace the values
E = -2 (-500) x
E = 1000 x
Answer:
the net work done on the cart is 160 J.
Explanation:
Given;
mass of the cart, m = 5.0 kg
initial velocity of the cart, u = 6 m/s
final velocity of the cart, v = 10 m/s
The net work done on the cart is equal to change in average kinetic energy of the cart;

Therefore, the net work done on the cart is 160 J.