Answer:
increasing the masses of the objects and increasing the distance between the objects
The rod's mass moment of inertia is 5kgm².
<h3>Moment of Inertia:</h3>
The "sum of the product of mass" of each particle with the "square of its distance from the axis of rotation" is the formula for the moment of inertia.
The Parallel axis Theorem can be used to compute the moment of inertia about the end of the rod directly or to derive it from the center of mass expression. I = kg m². We can use the equation for I of a cylinder around its end if the thickness is not insignificant.
If we look at the rod we can assume that it is uniform. Therefore the linear density will remain constant and we have;
or = M / L = dm / dl
dm = (M / L) dl


Here the variable of the integration is the length (dl). The limits have changed from M to the required fraction of L.

![I = \frac{M}3L}[(\frac{L^3}{2^3} - \frac{-L^3}{2^3} )]\\\\I = \frac{1}{12}ML^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BM%7D3L%7D%5B%28%5Cfrac%7BL%5E3%7D%7B2%5E3%7D%20%20%20-%20%5Cfrac%7B-L%5E3%7D%7B2%5E3%7D%20%29%5D%5C%5C%5C%5CI%20%3D%20%5Cfrac%7B1%7D%7B12%7DML%5E2)
Mass of the rod = 15 kg
Length of the rod = 2.0 m
Moment of Inertia, I = 
= 5 kgm²
Therefore, the moment of inertia is 5kgm².
Learn more about moment of inertia here:
brainly.com/question/14119750
#SPJ4
Answer:
Squamous epithelium has cells that are wider than their height (flat and scale-like). ... Cuboidal epithelium has cells whose height and width are approximately the same (cube shaped). Columnar epithelium has cells taller than they are wide (column-shaped).
Answer:
A drop of water falling from a faucet into a sink
I think it would be near the sun due.to high rays of sun