Complete Question
A spherical wave with a wavelength of 2.0 mm is emitted from the origin. At one instant of time, the phase at r_1 = 4.0 mm is π rad. At that instant, what is the phase at r_2 = 3.5 mm ? Express your answer to two significant figures and include the appropriate units.
Answer:
The phase at the second point is 
Explanation:
From the question we are told that
The wavelength of the spherical wave is 
The first radius is 
The phase at that instant is 
The second radius is 
Generally the phase difference is mathematically represented as

this can also be expressed as

So we have that

substituting values




The Gravitational Force between given objects will be ~

We know that ~

where ~
= mass of 1st object = 70 kg
= mass of 2nd object = 2000 kg
- G = gravitational constant =

- r = distance between the objects = 1 m
Let's calculate the force ~
The river that flows through Rome is the Tiber.
The apparent change in the frequency of a sound caused by the motion of either The Listener or the source of the sound