1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
4 years ago
9

What is y=x-4 and y=4x-10

Mathematics
2 answers:
PolarNik [594]4 years ago
6 0

Answer:

I got an answer of X = 2

Step-by-step explanation:

I used subtituion and got 2

mario62 [17]4 years ago
6 0

Answer:

Step-by-step explanation:

I've already answered this question.

You might be interested in
What is the gcf of 27 and 36
mestny [16]

The answer would be 9. 9x3=27 and 9x4=36. Although 3 fits into both, 9 is the BIGGER number that also fits into both of the numbers shown in the problem.

5 0
3 years ago
Read 2 more answers
MATH HELP PLZ!!!
RoseWind [281]

Answer:

a)    tan (157.5) = \frac{1-cos 315}{sin315}

b)

            sin (165) =\sqrt{ \frac{1-cos (330) }{2}}

c)

      sin^{2} (157.5) = \frac{1-cos (315) }{2}

d)

  cos 330° = 1- 2 sin² (165°)

       

         

Step-by-step explanation:

<u><em>Step(i):-</em></u>

By using trigonometry formulas

a)

cos2∝  = 2 cos² ∝-1

cos∝ = 2 cos² ∝/2 -1

1+ cos∝ =  2 cos² ∝/2

cos^{2} (\frac{\alpha }{2}) = \frac{1+cos\alpha }{2}

b)

cos2∝  = 1- 2 sin² ∝

cos∝  = 1- 2 sin² ∝/2

sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

<u><em>Step(i):-</em></u>

Given

              tan\alpha = \frac{sin\alpha }{cos\alpha }

          we know that trigonometry formulas

        sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )

         1- cos∝ =  2 sin² ∝/2

      Given

         tan(\frac{\alpha }{2} ) = \frac{sin(\frac{\alpha }{2} )}{cos(\frac{\alpha }{2}) }

put ∝ = 315

      tan(\frac{315}{2} ) = \frac{sin(\frac{315 }{2} )}{cos(\frac{315 }{2}) }

     multiply with ' 2 sin (∝/2) both numerator and denominator

        tan (\frac{315}{2} )= \frac{2sin^{2}(\frac{315)}{2}  }{2sin(\frac{315}{2} cos(\frac{315}{2}) }

Apply formulas

 sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )

  1- cos∝ =  2 sin² ∝/2

now we get

 tan (157.5) = \frac{1-cos 315}{sin315}

       

b)

          sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

               put ∝ = 330° above formula

             sin^{2} (\frac{330 }{2}) = \frac{1-cos (330) }{2}

            sin^{2} (165) = \frac{1-cos (330) }{2}

            sin (165) =\sqrt{ \frac{1-cos (330) }{2}}

c )

         sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

               put ∝ = 315° above formula

             sin^{2} (\frac{315 }{2}) = \frac{1-cos (315) }{2}

            sin^{2} (157.5) = \frac{1-cos (315) }{2}

           

d)

     cos∝  = 1- 2 sin² ∝/2

   put      ∝ = 330°

       cos 330 = 1 - 2sin^{2} (\frac{330}{2} )

      cos 330° = 1- 2 sin² (165°)

3 0
3 years ago
Number of factor of a + b whole square is​
Morgarella [4.7K]

Answer:

(a+b)² = a² + b² + 2ab

7 0
4 years ago
Find all real values of t that satisfy the equation t^2 = 324. If you find more than one, then list your values in increasing or
vredina [299]

Answer:

t = -18, 18

Step-by-step explanation:

Take the square root of both sides of the equation.

... t = ±√324 = ±18

4 0
4 years ago
Compute the differential of surface area for the surface S described by the given parametrization.
AysviL [449]

With S parameterized by

\vec r(u,v)=\langle e^u\cos v,e^u\sin v,uv\rangle

the surface element \mathrm dS is

\mathrm dS=\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|\,\mathrm du\,\mathrm dv

We have

\dfrac{\partial\vec r}{\partial u}=\langle e^u\cos v,e^u\sin v,v\rangle

\dfrac{\partial\vec r}{\partial v}=\langle -e^u\sin v,e^u\cos v,u\rangle

with cross product

\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\langle ue^u\sin v-ve^u\cos v,-ve^u\sin v-ue^u\cos v,e^{2u}\cos^2v+e^{2u}\sin^2v\rangle

\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\langle e^u(u\sin v-v\cos v),-e^u(v\sin v+u\cos v),e^{2u}\rangle

with magnitude

\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=\sqrt{e^{2u}(u\sin v-v\cos v)^2+e^{2u}(v\sin v+u\cos v)^2+e^{4u}}

\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=e^u\sqrt{u^2+v^2+e^{2u}}

So we have

\mathrm dS=\boxed{e^u\sqrt{u^2+v^2+e^{2u}}\,\mathrm du\,\mathrm dv}

8 0
3 years ago
Other questions:
  • Mariah is debating whether to use a straightedge and compass or a computer drawing program to complete a construction of a regul
    11·2 answers
  • Suppose a right cylinder was bent into a U-shape and was compared to another right cylinder. What can be said about their volume
    6·2 answers
  • Write an equation of the line passing through point P(0, −1) that is parallel to the line y = −2x+3 .
    11·1 answer
  • A tree and its shadow is proportional to Harry and his shadow. If Harry is 6 feet tall and his shadow
    13·2 answers
  • Pls help I hate math and I have to get somewhere soon
    14·1 answer
  • What is the result of dividing x³-4 by x+2​
    15·1 answer
  • the original price of the t shirt is $28. the sale price is $35 off of the original price. what is the amount off of the origina
    8·1 answer
  • The area of a square poster is 30 space i n. squared. Find the length of one side of the poster to the nearest tenth of an inch.
    7·1 answer
  • Which point is not on the graph of the equation y=10+x
    13·1 answer
  • Type the correct answer in each box. use numerals instead of words. if necessary, use / for the fraction bar(s). a professor is
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!