1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katyanochek1 [597]
3 years ago
5

MATH HELP PLZ!!!

Mathematics
1 answer:
RoseWind [281]3 years ago
3 0

Answer:

a)    tan (157.5) = \frac{1-cos 315}{sin315}

b)

            sin (165) =\sqrt{ \frac{1-cos (330) }{2}}

c)

      sin^{2} (157.5) = \frac{1-cos (315) }{2}

d)

  cos 330° = 1- 2 sin² (165°)

       

         

Step-by-step explanation:

<u><em>Step(i):-</em></u>

By using trigonometry formulas

a)

cos2∝  = 2 cos² ∝-1

cos∝ = 2 cos² ∝/2 -1

1+ cos∝ =  2 cos² ∝/2

cos^{2} (\frac{\alpha }{2}) = \frac{1+cos\alpha }{2}

b)

cos2∝  = 1- 2 sin² ∝

cos∝  = 1- 2 sin² ∝/2

sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

<u><em>Step(i):-</em></u>

Given

              tan\alpha = \frac{sin\alpha }{cos\alpha }

          we know that trigonometry formulas

        sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )

         1- cos∝ =  2 sin² ∝/2

      Given

         tan(\frac{\alpha }{2} ) = \frac{sin(\frac{\alpha }{2} )}{cos(\frac{\alpha }{2}) }

put ∝ = 315

      tan(\frac{315}{2} ) = \frac{sin(\frac{315 }{2} )}{cos(\frac{315 }{2}) }

     multiply with ' 2 sin (∝/2) both numerator and denominator

        tan (\frac{315}{2} )= \frac{2sin^{2}(\frac{315)}{2}  }{2sin(\frac{315}{2} cos(\frac{315}{2}) }

Apply formulas

 sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )

  1- cos∝ =  2 sin² ∝/2

now we get

 tan (157.5) = \frac{1-cos 315}{sin315}

       

b)

          sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

               put ∝ = 330° above formula

             sin^{2} (\frac{330 }{2}) = \frac{1-cos (330) }{2}

            sin^{2} (165) = \frac{1-cos (330) }{2}

            sin (165) =\sqrt{ \frac{1-cos (330) }{2}}

c )

         sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

               put ∝ = 315° above formula

             sin^{2} (\frac{315 }{2}) = \frac{1-cos (315) }{2}

            sin^{2} (157.5) = \frac{1-cos (315) }{2}

           

d)

     cos∝  = 1- 2 sin² ∝/2

   put      ∝ = 330°

       cos 330 = 1 - 2sin^{2} (\frac{330}{2} )

      cos 330° = 1- 2 sin² (165°)

You might be interested in
The radius of your earth model is 9cm. what is the surface area
Lapatulllka [165]
The surface area formula is 4 x pi x r^2

5 0
3 years ago
Please solve this, will rate 5 stars and mark as STAR!​
Nina [5.8K]

Answer:

\boxed{5 \cdot \sqrt{2}  \cdot \sqrt[6]{5} }

Step-by-step explanation:

\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }

\sqrt{\sqrt[3]{10} } \implies (10^\frac{1}{3} )^\frac{1}{2} =10^\frac{1}{6} =\sqrt[6]{10}

\therefore \sqrt{\sqrt[3]{10} }=\sqrt[6]{10}

\text{Solving }\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }

250=2 \cdot 5^3

\sqrt[3]{250}=\sqrt[3]{2\cdot 5^3}=5  \sqrt[3]{2}

Once

\sqrt[6]{2}  \cdot \sqrt[6]{5} = \sqrt[6]{10}

We have

5  \sqrt[3]{2} \cdot \sqrt[6]{2}  \cdot \sqrt[6]{5}

We can proceed considering the common base of exponentials

\sqrt[3]{2}  \cdot \sqrt[6]{2}  =  2^{\frac{1}{3}} \cdot  2^{\frac{1}{6} }  = 2^{\frac{3}{6} } = 2^{\frac{1}{2} }=\sqrt{2}

Therefore,

5  \sqrt[3]{2} \cdot \sqrt[6]{2}  \cdot \sqrt[6]{5} = 5 \cdot \sqrt{2}  \cdot \sqrt[6]{5}

7 0
3 years ago
The blue figure is a dialation image of the black figure. The labeled point is the center of dilation. Tell wheaten the dilation
algol13
I need a picture of the figures to help with this!
8 0
3 years ago
Read 2 more answers
You and three friends own a paint shop. The shop's profit was $536 in the first month. You always divide the profits equally. In
d1i1m1o1n [39]
C. $360 $536+$360=$896 $896/4= $360
3 0
3 years ago
Which is the graph of y=3/4x-3?<br>Graph C<br>Graph B<br>Graph A​
Alika [10]
I believe it’s graph c :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • Six times a number decreased by twelve
    5·2 answers
  • Add (6x^2-3x)+(5x-7)
    6·2 answers
  • 6
    5·1 answer
  • Find the Missing length
    8·1 answer
  • Melanie made contributions to a ROTH IRA over the course of working 34 years. Her contributions averaged $3,750 annually.
    12·1 answer
  • HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    10·1 answer
  • Which line segments are equal? How do you know?
    6·1 answer
  • The yearly cost in dollars, y, at a video game arcade based on total game tokens purchased, x, is y = x + 60 for a member and y
    9·1 answer
  • Please help I am stuck. Would you also please explain on how to solve?
    9·1 answer
  • Write the absolute value equations in the form x−b =c (where b is a number and c can be either number or an expression) that hav
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!