1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
6

Compute the differential of surface area for the surface S described by the given parametrization.

Mathematics
1 answer:
AysviL [449]3 years ago
8 0

With S parameterized by

\vec r(u,v)=\langle e^u\cos v,e^u\sin v,uv\rangle

the surface element \mathrm dS is

\mathrm dS=\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|\,\mathrm du\,\mathrm dv

We have

\dfrac{\partial\vec r}{\partial u}=\langle e^u\cos v,e^u\sin v,v\rangle

\dfrac{\partial\vec r}{\partial v}=\langle -e^u\sin v,e^u\cos v,u\rangle

with cross product

\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\langle ue^u\sin v-ve^u\cos v,-ve^u\sin v-ue^u\cos v,e^{2u}\cos^2v+e^{2u}\sin^2v\rangle

\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\langle e^u(u\sin v-v\cos v),-e^u(v\sin v+u\cos v),e^{2u}\rangle

with magnitude

\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=\sqrt{e^{2u}(u\sin v-v\cos v)^2+e^{2u}(v\sin v+u\cos v)^2+e^{4u}}

\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=e^u\sqrt{u^2+v^2+e^{2u}}

So we have

\mathrm dS=\boxed{e^u\sqrt{u^2+v^2+e^{2u}}\,\mathrm du\,\mathrm dv}

You might be interested in
For what values of x is x3+23x2+162x+360=0 a true statement?
Olenka [21]

Answer:

Step-by-step explanation:

x³+23x²+162x+360=0

x³+12x²+11x²+132x+30x+360=0

x²(x+12)+11x(x+12)+30(x+12)=0

(x+12)(x²+11x+30)=0

(x+12)[x²+6x+5x+30]=0

(x+12)[x(x+6)+5(x+6)]=0

(x+12)(x+6)(x+5)=0

x=-12,-6,-5

3 0
3 years ago
The equation for the speed/distance
asambeis [7]

Step-by-step explanation:

S = 93 log (d) + 65; S = wind speed; d = distance traveled by tornado

A) tornado travels 130 miles = d; find S

S = 93 log10(130) + 65

S = 261.6 mph rounds up to 262 mph

7 0
3 years ago
Read 2 more answers
Greg chose C as the answer. How might he have gotten that answer?
Katyanochek1 [597]

Given:

The equation is  

-0.4x+0.05y-1.25=0

Where, y is the total cost and x is the number of months.

To find:

The y-intercept of the line represented by this equation.

Solution:

We have,

-0.4x+0.05y-1.25=0

Isolate y variable.

0.05y=0.4x+1.25

Divide both sides by 0.05.

y=\dfrac{0.4x+1.25}{0.05}

y=\dfrac{0.4x}{0.05}+\dfrac{1.25}{0.05}

y=8x+25

Putting x=0, we get

y=8(0)+25

y=0+25

y=25

Therefore, the y-intercept of the given equation is 25 and the correct option is D.

7 0
3 years ago
Find the equation of line that contains point (2,9) and is parallel to the line y=-5x+7?
kotegsom [21]

Answer:

y = -5x + 19

Step-by-step explanation:

Note that the equation of any line parallel to y= -5x+7 has the same form as y= -5x+7, but a different constant.  Knowing that this new line passes thru (2,9), we determine the value of this constant as follows:  9 = -5(2) + C, or 9 = -10 + C.  Then C = 19, and the equation of this new line is

y = -5x + 19

6 0
3 years ago
I need help on this hhhhhhhh​
Anon25 [30]

\huge\text{Hey there!}

\mathsf{\dfrac{10^{15}}{10^4}}

\mathsf{10^{15}}\\\mathsf{=10\times10\times10\times10\times10\times10\times10\times10\times10\times10\times 10\times10\times10\times10\times10}\\\mathsf{= \boxed{\bf 1,000,000,000,000,000}}

\mathsf{\dfrac{\bold{1,000,000,000,000,000}}{10^4}}

\mathsf{10^4}\\\mathsf{= 10\times10\times10\times10}\\\mathsf{10\times10=\bf 100}\\\mathsf{100\times100}\\\mathsf{= \boxed{\bf 10,000}}

\mathsf{\dfrac{1,000,000,000,000,000}{\bf 10,000}}

\mathsf{\dfrac{1,000,000,000,000,000}{10,000}}\\\\\mathsf{= 1,000,000,000,000,000\div 10,000}\\\\\mathsf{= \boxed{\bf 100,000,000,000}}

\mathsf{10^{11}}\\\mathsf{10\times10\times10\times10\times10\times10\times10\times10\times10\times10\times10}\\\mathsf{= \boxed{\bf 100,000,000,000}}

\mathsf{100,000,000,000= 100,000,000,000= 10^{11}}

\boxed{\boxed{\large\text{Answer: BASICALLY }\mathsf{\dfrac{10^1^5}{10^4}\large\text{ is EQUAL to or EQUIVALENT to}}}}\\\boxed{\boxed{\mathsf{10^{11}}\large\text{ because they both give you the result of \bf 100,000,000,000}}}\huge\checkmark

\large\textsf{Good luck on your assignment and enjoy your day!}

~\frak{Amphitrite1040:)}

3 0
3 years ago
Other questions:
  • Someone to dance this question and show how you got the answer
    6·2 answers
  • What ratio is equivalent to 30/2
    6·2 answers
  • I need help on number 3 6 7 8 9 and 10 please I’ll give you brainliest
    8·1 answer
  • Combine like terms:<br><br> A.4x – 3y + 2x + y<br><br> b. -2x + 3y – 4y + 5y
    14·1 answer
  • Find the area of a circle using 3.14 as pie <br> d=8cm
    7·2 answers
  • List all the factors of the number 30.
    11·1 answer
  • Given the absolute value function j(x) = |x|, what's the equation that results from translating j(x) right 8 units and up 6 unit
    9·2 answers
  • What is the value of x?<br><br><br><br> A. <br> 73°<br> B. <br> 45°<br> C. <br> 35°<br> D. <br> 25°
    10·2 answers
  • A particle moves along a horizontal line. Its position function is s(t) for t&gt;0. For each problem, find the velocity function
    6·1 answer
  • 2. Ronnie buys 18 identical t-shirts costing £36. How much would 1 t-shirt cost? <br>​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!