Answer:
807.8 in^2
Step-by-step explanation:
The total area of the box is the sum of the areas of all faces of the box. The top, bottom, front, and back faces are rectangles 18 in long. The end faces each consist of a rectangle and a triangle. We can compute the sum of these like this:
The areas of top, bottom, front, and back add up to be 18 inches wide by the length that is the perimeter of the end: 2·5in +2·8 in + 9.6 in = 35.8 in. That lateral area is ...
(18 in)(35.6 in) = 640.8 in^2
The area of the triangle on each end is equivalent to the area of a rectangle half as high, so we can compute the area of each end as ...
(9.6 in)(8.7 in) = 83.52 in^2
Then the total area is the lateral area plus the area of the two ends:
640.8 in^2 + 2·83.52 in^2 = 807.84 in^2 ≈ 807.8 in^2
Answer:
49
Step-by-step explanation:
side 1 = |18-3|= 15
side 2 = |12-3| = 9
side 3 = |16-4| = 12
side 4: 
perimeter = 15 + 9 + 12 + 13,4= 49,4 = 49
Answer:
44 dollars
Step-by-step explanation:
28 minus 5 is 23
67 minus 23 is 44
Answer:
Hence the function which has the smallest minimum is: h(x)
Step-by-step explanation:
We are given function f(x) as:
- f(x) = −4 sin(x − 0.5) + 11
We know that the minimum value attained by the sine function is -1 and the maximum value attained by sine function is 1.
so the function f(x) receives the minimum value when sine function attains the maximum value since the term of sine function is subtracted.
Hence, the minimum value of f(x) is: 11-4=7 ( when sine function is equal to 1)
- Also we are given a table of values for function h(x) as:
x y
−2 14
−1 9
0 6
1 5
2 6
3 9
4 14
Hence, the minimum value attained by h(x) is 5. ( when x=1)
- Also we are given function g(x) ; a quadratic function passing through (2,7),(3,6) and (4,7)
so, the equation will be:
Hence on putting these coordinates we will get:
a=1,b=3 and c=7.
Hence the function g(x) is given as:

So,the minimum value attained by g(x) could be seen from the graph is at the point (3,6).
Hence, the minimum value attained by g(x) is 6.
Hence the function which has the smallest minimum is h(x)
Answer:
C (reflection across the x access)
Step-by-step explanation:
I got it right on edge