When a quadrilateral is inscribed in a circle, the opposite angles are supplementary
The description of the angles in the quadrilaterals are:
- b. m∠M = 55°, m∠J = 48°, and m∠L = 132°
- d. m∠L = 40°, m∠M = 60°, and m∠K = 120°
- e. m∠K = 72°, m∠L = 44°, and m∠M = 108°
- f. m∠J = 105°, m∠K = 65°, and m∠L = 75°
<h3>How to describe the angles</h3>
The quadrilateral is given as: JKLM
The opposite angles are:
- Angles J and L
- Angles K and M
The opposite angles are supplementary
So, we have:


Next, we test the options
<u>Option (a)</u>


This is not true
<u>Option (b)</u>


This is true
<u>Option (c)</u>


This is not true
<u>Option (d)</u>


This is true
<u>Option (e)</u>


This is true
<u>Option (f)</u>


This true
Hence, the description of the angles in the quadrilaterals are (b), (d), (e) and (f)
Read more about inscribed quadrilaterals at:
brainly.com/question/26690979
Answer:
It is A.
Step-by-step explanation:
To solve for b, use the 45-45-90 triangle theorem, in which each of the legs is x, so the legs would be 8. The hypotenuse would therefore be 8√2.
So without further solving the answer is A, since it's the only one with 8√2.
However, I will still solve for A and C. Using the 30-60-90 theorem, we have the sides as x, x√3, and 2x. The second longest side is b. Using this, we find a = 4√6 and c to be 4√2
After solving for w using inverse operations, w would have to equal 5.74 to make this equation true.
Answer:
56 ÷ 8 = p
Step-by-step explanation:I
If you want to find how many packs there are, it would be 56 divided by 8 would equal p.