Answer:
18 seeds
Step-by-step explanation:
3 x 6 = 18 seeds
3/5 x 30 = 18 seeds
Hope that helps!
Answer:
(3 x)/(5 x + 2)
Step-by-step explanation:
Simplify the following:
(3 x^2)/(5 x^2 + 2 x)
Hint: | Factor common terms out of 5 x^2 + 2 x.
Factor x out of 5 x^2 + 2 x:
(3 x^2)/(x (5 x + 2))
Hint: | For all exponents, a^n a^m = a^(n + m). Apply this to (3 x^2)/(x (5 x + 2)).
Combine powers. (3 x^2)/(x (5 x + 2)) = (3 x^(2 - 1))/(5 x + 2):
(3 x^(2 - 1))/(5 x + 2)
Hint: | Evaluate 2 - 1.
2 - 1 = 1:
Answer: (3 x)/(5 x + 2)
Answer:
Surface area of the reflective glass is 543234.4 square feet.
Step-by-step explanation:
Given that: height = 311 feet, sides of square base = 619 feet.
To determine the slant height, we have;
=
+ 
= 96721 + 95790.25
= 192511.25
⇒ l = 
= 438.761
The slant height, l is 438.8 feet.
Considering one reflecting surface of the pyramid, its area =
× base × height
area =
× 619 × 438.8
= 135808.6
= 135808.6 square feet
Since the pyramid has four reflective surfaces,
surface area of the reflective glass = 4 × 135808.6
= 543234.4 square feet
Answer:
80 tickets
Step-by-step explanation:
Given the profit, y, modeled by the equation, y = x^2 – 40x – 3,200, where x is the number of tickets sold, we are to find the total number of tickets, x, that need to be sold for the drama club to break even. To do that we will simply substitute y = 0 into the given the equation and calculate the value of x;
y = x^2 – 40x – 3,200,
0 = x^2 – 40x – 3,200,
x^2 – 40x – 3,200 = 0
x^2 – 80x + 40x – 3,200 = 0
x(x-80)+40(x-80) = 0
(x+40)(x-80) = 0
x = -40 and x = 80
x cannot be negative
Hence the total number of tickets, x, that need to be sold for the drama club to break even is 80 tickets
The answer is <span>2(–4y + 13) – 3y = –29
Step 1: Express </span><span>x from the second equation
Step 2: Substitute x into the first equation:
The system of equations is:
</span><span>2x – 3y = –29
x + 4y = 13
Step 1:
</span>The second equation is: x + 4y = 13
Rearrange it to get x: x = - 4y + 13
Step 2:
The first equation is: 2x – 3y = –29
The second equation is: x = - 4y + 13
Substitute x from the second equation into the first one:
2(-4y + 13) - 3y = -29
Therefore, the second choice is correct.