1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
3 years ago
8

Simplify (30x - 12y) + (41x + 62y)

Mathematics
2 answers:
Taya2010 [7]3 years ago
8 0

Answer:

71x+50y

Step-by-step explanation:

DedPeter [7]3 years ago
7 0
Answer is: 71x+50y
(by simplifying) :)
You might be interested in
The<br> numbers are {0, 1, 2, 3, 4, ...}.<br> whole<br> rational<br> natural<br> real<br> integer
Brilliant_brown [7]

Answer:

Whole numbers are all natural numbers including 0 e.g. 0, 1, 2, 3, 4…

Integers include all whole numbers and their negative counterpart e.g. …-4, -3, -2, -1, 0,1, 2, 3, 4,…

Step-by-step explanation:

7 0
3 years ago
9x43=9x(40+3)=(9x )+(9x3)= +27=
denis-greek [22]

Answer:

387, or you can do it another way in the problem if you like/.

Step-by-step explanation:

3x9=27

4x9=36

36+2=38

387

8 0
3 years ago
2.Solve the following quadratic equations<br> i. 9x^2 - 1/16<br> ii. 2h^2 - 3h - 27
Juli2301 [7.4K]
i)~9x^2-\dfrac{1}{16}=0\iff9x^2=\dfrac{1}{16}\iff x^2=\dfrac{1}{9\cdot16}\iff \\\\x^2=\dfrac{1}{144}\iff x=\pm\sqrt{\dfrac{1}{144}}=\pm\dfrac{1}{12}\Longrightarrow\boxed{x=\pm\dfrac{1}{12}}


ii)~2h^2-3h-27=0\\\\\Delta=b^2-4ac\to \Delta=(-3)^2-4\cdot2\cdot(-27)\to\Delta=9+216=225\\\\&#10;\Longrightarrow h=\dfrac{-b\pm\sqrt{\Delta}}{2a}=\dfrac{-(-3)\pm\sqrt{225}}{2\cdot2}=\dfrac{3\pm15}{4}\\\\\begin{cases}h_1=\dfrac{3+15}{4}=\dfrac{18}{4}\iff \boxed{h_1=\dfrac{9}{2}}\\h_2=\dfrac{3-15}{4}=\dfrac{-12}{4}\iff\boxed{h_2=-3}\end{cases}

4 0
3 years ago
A sphere of radius r is cut by a plane h units above the equator, where
Anika [276]
Consider the top half of a sphere centered at the origin with radius r, which can be described by the equation

z=\sqrt{r^2-x^2-y^2}

and consider a plane

z=h

with 0. Call the region between the two surfaces R. The volume of R is given by the triple integral

\displaystyle\iiint_R\mathrm dV=\int_{-\sqrt{r^2-h^2}}^{\sqrt{r^2-h^2}}\int_{-\sqrt{r^2-h^2-x^2}}^{\sqrt{r^2-h^2-x^2}}\int_h^{\sqrt{r^2-x^2-y^2}}\mathrm dz\,\mathrm dy\,\mathrm dx

Converting to polar coordinates will help make this computation easier. Set

\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\var\phi\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi

Now, the volume can be computed with the integral

\displaystyle\iiint_R\mathrm dV=\int_0^{2\pi}\int_0^{\arctan\frac{\sqrt{r^2-h^2}}h}\int_{h\sec\varphi}^r\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta

You should get

\dfrac{2\pi}3\left(r^3\arctan\dfrac{\sqrt{r^2-h^2}}h-\dfrac{h^3}2\left(\dfrac{r\sqrt{r^2-h^2}}{h^2}+\ln\dfrac{r+\sqrt{r^2-h^2}}h\right)\right)
5 0
3 years ago
Please help me with this problem
sineoko [7]

Answer:

4

Step-by-step explanation:

\frac{ {3x}^{2} -2x + 7}{2x+5}  \\  \frac{3( - 1) {}^{2}  - 2( - 1) + 7}{2( - 1) + 5 }  \\  \frac{3 + 2 + 7}{ - 2 + 5}  \\  \frac{12}{3}  = 4

7 0
3 years ago
Other questions:
  • The area of a rectangular patio is (12x - 4) square units. What are possible dimensions of the patio?
    9·1 answer
  • 1.
    11·1 answer
  • Three times a certain number, n, is 21​
    9·1 answer
  • This website is useless dont get any type of answers
    10·1 answer
  • Which of the following ordered pairs is a solution of x + 1/2y = 1?
    5·1 answer
  • Factor and then solve the question. <br><br>X^2-6X=7​
    9·1 answer
  • H U R R Y HELP ME IM FAILING
    13·2 answers
  • Fill in the blanks
    9·2 answers
  • Name the smallest even number divisible by 6 and 9.
    6·1 answer
  • Solving 8 problems per Minute, Fast Funn can finish his test in time. He was, however, working fast, solving 10 problems per min
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!