Answer:
n+3
Step-by-step explanation:
Hey there! :D
Since she walks 3/4 a mile a day, we can multiply that by 4.
3/4= .75
4*.75= 3
She walked 3 miles in 4 days.
I hope this helps!
~kaikers
Answer:
First, we write the augmented matrix.
⎡
⎢
⎣
1
−
1
1
2
3
−
1
3
−
2
−
9
|
8
−
2
9
⎤
⎥
⎦
Next, we perform row operations to obtain row-echelon form.
−
2
R
1
+
R
2
=
R
2
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
3
−
2
−
9
|
8
−
18
9
⎤
⎥
⎦
−
3
R
1
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
0
1
−
12
|
8
−
18
−
15
⎤
⎥
⎦
The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R
2
and \displaystyle {R}_{3}R
3
.
Interchange
R
2
and
R
3
→
⎡
⎢
⎣
1
−
1
1
8
0
1
−
12
−
15
0
5
−
3
−
18
⎤
⎥
⎦
Then
−
5
R
2
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
57
|
8
−
15
57
⎤
⎥
⎦
−
1
57
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
1
|
8
−
15
1
⎤
⎥
⎦
The last matrix represents the equivalent system.
x
−
y
+
z
=
8
y
−
12
z
=
−
15
z
=
1
Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).First, we write the augmented matrix.
⎡
⎢
⎣
1
−
1
1
2
3
−
1
3
−
2
−
9
|
8
−
2
9
⎤
⎥
⎦
Next, we perform row operations to obtain row-echelon form.
−
2
R
1
+
R
2
=
R
2
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
3
−
2
−
9
|
8
−
18
9
⎤
⎥
⎦
−
3
R
1
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
0
1
−
12
|
8
−
18
−
15
⎤
⎥
⎦
The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R
2
and \displaystyle {R}_{3}R
3
.
Interchange
R
2
and
R
3
→
⎡
⎢
⎣
1
−
1
1
8
0
1
−
12
−
15
0
5
−
3
−
18
⎤
⎥
⎦
Then
−
5
R
2
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
57
|
8
−
15
57
⎤
⎥
⎦
−
1
57
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
1
|
8
−
15
1
⎤
⎥
⎦
The last matrix represents the equivalent system.
x
−
y
+
z
=
8
y
−
12
z
=
−
15
z=1
Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).
Answer:
A.) Even.
Step-by-step explanation:
If a function is an even function, then
F(-x) = f(x)
Also, if a function is an odd function, then, f(-x) = -f(x)
You are given the below function
f(x) = 1 + 3x^2 − x^4
Let x = 2
Substitute 2 for x in the function
F(x) = 1 + 3(2)^2 - (2)^4
F(x) = 1 + 3(4) - 16
F(x) = 1 + 12 - 16
F(x) = -3
Also, Substitute -2 for x in the function
F(x) = 1 + 3(-2)^2 - (-2)^4
F(x) = 1 + 3(4) - 16
F(x) = 1 + 12 - 16
F(x) = -3
Since f(-x) = f(x), we can conclude that
F(x) = 1 + 3x^2 - x^4 is even