Answer: try to understand coz the question is not valid
Explanation: Explain the relationship between forward and reverse reactions at equilibrium and predict how changing the amount of a reactant or product (creating a stress) will affect that relationship.For example (select one from each underlined section)If the amount of (reactant or product) increases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. If the amount of (reactant or product) decreases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. Procedure: Access the virtual lab and complete the inquiry experiment
Plants are chlorophyll-containing photosynthetic organisms. Thus, they convert solar or radiant energy into chemical energy under the process termed as photosynthesis.
<u>Explanation:</u>
- Plants are chlorophyll-containing photosynthetic living beings. Consequently, they convert radiant energy into chemical energy under the procedure named photosynthesis.
- Except for remote ocean hydro-thermal environment, the sun is the only source for all biological systems on earth. Plants catch just 2-10 percent of the solar radiation and transmit it as chemical energy. All creatures are reliant for their nourishment on producers (plants), either directly or indirectly. So there is a stream of energy from the sun (radiant energy) to producers and then to consumers (chemical energy).
This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
Answer:
34.28 L ( 1.5*22.4 L)
Explanation:
Calculation of the moles of aluminum as:-
Mass = 55 g
Molar mass of aluminum = 26.981539 g/mol
The formula for the calculation of moles is shown below:
Thus,

According to the reaction:-

4 moles of aluminum react with 3 moles of oxygen gas
1 mole of aluminum react with
moles of oxygen gas
2.0384 moles of aluminum react with
moles of oxygen gas
Moles of oxygen gas = 1.5288 moles
At STP,
Pressure = 1 atm
Temperature = 273.15 K
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
1 atm × V = 1.5288 mol × 0.0821 L.atm/K.mol × 273.15 K
⇒V = 34.28 L ( 1.5*22.4 L)