There was less of it, making it more possible for the species to be extinct.
Answer:
please mark as brainliest answer as it will also give you 3 points
Explanation:
Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells.[1] They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. In fact, yeast cells can proliferate normally when their CDK gene has been replaced with the homologous human gene.[1][2] CDKs are relatively small proteins, with molecular weights ranging from 34 to 40 kDa, and contain little more than the kinase domain.[1] By definition, a CDK binds a regulatory protein called a cyclin. Without cyclin, CDK has little kinase activity; only the cyclin-CDK complex is an active kinase but its activity can be typically further modulated by phosphorylation and other binding proteins, like p27. CDKs phosphorylate their substrates on serines and threonines, so they are serine-threonine kinases.[1] The consensus sequence for the phosphorylation site in the amino acid sequence of a CDK substrate is [S/T*]PX[K/R], where S/T* is the phosphorylated serine or threonine, P is proline, X is any amino acid, K is lysine, and R is arginine.[1]
Answer:
Brown dwarfs are objects which are too large to be called planets and too small to be stars. They have masses that range between twice the mass of Jupiter and the lower mass limit for nuclear reactions (0.08 times the mass of our sun). ... Brown dwarfs are very dim and cool compared with stars.
Explanation:
Just as animals, plants also contain vascular<span> tissues (</span>xylem<span>), which transports water and minerals up from the roots to the leaves, and </span>phloem<span>, which transports sugar molecules, amino acids, and hormones both up and down through the plant</span>
It is Nucleic Acids, they consist of long chains of units like the proteins, but still both are different.