No they won’t be.Consider the linear combination (1)(u – v) + (1) (v – w) + (-1)(u – w).This will add to 0. But the coefficients aren’t all 0.Therefore, those vectors aren’t linearly independent.
You can try an example of this with (1, 0, 0), (0, 1, 0), and (0, 0, 1), the usual basis vectors of R3.
That method relied on spotting the solution immediately.If you couldn’t see that, then there’s another approach to the problem.
We know that u, v, w are linearly independent vectors.So if au + bv + cw = 0, then a, b, and c are all 0 by definition.
Suppose we wanted to ask whether u – v, v – w, and u – w are linearly independent.Then we’d like to see if there are non-zero coefficients in the linear combinationd(u – v) + e(v – w) + f(u – w) = 0, where d, e, and f are scalars.
Distributing, we get du – dv + ev – ew + fu – fw = 0.Then regrouping by vector: (d + f)u + (-d +e)v + (-e – f)w = 0.
But now we have a linear combo of u, v, and w vectors.Therefore, all the coefficients must be 0.So d + f = 0, -d + e = 0, and –e – f = 0. It turns out that there’s a free variable in this solution.Say you let d be the free variable.Then we see f = -d and e = d.
Then any solution of the form (d, e, f) = (d, d, -d) will make (d + f)u + (-d +e)v + (-e – f)w = 0 a true statement.
Let d = 1 and you get our original solution. You can let d = 2, 3, or anything if you want.
ANSWER:
r : 2 ( Pi ) r
Hope this helps! <3
slope (m) = rate. $40 per hour is the rate, so m = 45
y-intercept (b) = one time fee. $45 is the flat rate which is the one time fee, so b = 45
y = mx + b
y = 40x + 45
Answer: A
When you estimate you round to the nearest whole number (simply to make it easier.) Depending on what place you need to estimate to (like hundreds, or just tens..)
Let's turn 196 into 200 and 482 into 480
200+480 = 680
Hope this hlps!