That person;s body weight will be 156 Ib. Do 9 3/4 times 1/16 to get you body weight
In mathematics, two varying quantities are said to be in a relation of proportionality, if they are multiplicatively connected to a constant; that is, when either their ratio or their product yields a constant. The value of this constant is called the coefficient of proportionality or proportionality constant.
Answer:



The standard deviation will remain unchanged.
Step-by-step explanation:
Given

Solving (a): The range
This is calculated as:

Where:

So:


Solving (b): The variance
First, we calculate the mean




The variance is calculated as:

So, we have:
![\sigma^2 =\frac{1}{6-1}*[(136 - 135)^2 +(129 - 135)^2 +(141 - 135)^2 +(139 - 135)^2 +(138 - 135)^2 +(127 - 135)^2]](https://tex.z-dn.net/?f=%5Csigma%5E2%20%3D%5Cfrac%7B1%7D%7B6-1%7D%2A%5B%28136%20-%20135%29%5E2%20%2B%28129%20-%20135%29%5E2%20%2B%28141%20-%20135%29%5E2%20%2B%28139%20-%20135%29%5E2%20%2B%28138%20-%20135%29%5E2%20%2B%28127%20-%20135%29%5E2%5D)
![\sigma^2 =\frac{1}{5}*[162]](https://tex.z-dn.net/?f=%5Csigma%5E2%20%3D%5Cfrac%7B1%7D%7B5%7D%2A%5B162%5D)

Solving (c): The standard deviation
This is calculated as:


--- approximately
Solving (d): With the stated condition, the standard deviation will remain unchanged.
Answer:
x=30.6
Step-by-step explanation:
Answer:
D) 0.35
Step-by-step explanation:
The table gives the area between z=0 and the given magnitude of z. That is, the area between z = 0 and z = -0.6 is 0.23, as found in the 0.6 column of the table. Similarly, the area between z = 0 and z = 0.3 is 0.12, as found in the 0.3 column of the table.
The area between z = -0.6 and z = +0.3 is the sum of these areas:
p(-.6<z<.3) = 0.23 +0.12 = 0.35