9514 1404 393
Answer:
[-4,3]
Step-by-step explanation:
The domain is the left-right (horizontal) extent of the function. The dots at the end of the continuous line are solid, so the brackets on the interval are square brackets.
The left dot is at x=-4; the right dot is at x=3, so the domain is ...
[-4,3]
It is 546.4583333333333, which would simplify to 546.46 if to the hundredths place or 546.5 to the tens place
Let the maximum number of pages Jennifer can have be = x
Amount Jennifer has (P) = $62.10
Given equation is :
P = 
Price is given = 62.10 , so equation is :




Hence, Jennifer can have a maximum of 68 pages in her book.
A) f(x) is decreasing because the base is less than 1.
0.56 is close to 0.5, so its like saying that you are taking half each time, therefore the value is getting smaller.
g(x) is increasing because the base is greater than 1.
you are multiplying by 4 each time, making the value bigger.
B ) The y-intercept is where x=0.
Anything to the '0' power is 1. Therefore the y-intercept is equal to the coefficient in front of each function.
f(x) = 3 , g(x) = 6
C) Just plug in x=4 to each function in a calculator.
f(4) = 0.295
g(4) = 1536
Answer:
5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2)
Step-by-step explanation:
In order to solve this, your denominator must be the same. Let's start by writing out the two different quadratic formulas:
x^2 + 6x + 8 <-- This should factor out to (x+4)(x+2)
x^2 + 7x + 10 <-- This should factor out to (x+5)(x+2)
Now that you have factored out the two quadratics, plug them into the equation.
5x - 3
(x+4)(x+2) (x+5)(x+2)
Now as we know, -2 cannot be x because it will turn the entire equation undefined. Multiple top and bottom with (x+5) on the right side and (x+4) on the left side.
5x (x+5) - 3(x+4)
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)
Focus on the top. 5x(x+5) will turn out to be 5x^2+25x. 3(x+4) will turn out to be 3x+12. Combine the two equations because now they are equal to each other and do the subtraction:
5x^2+25x - (3x+12) = 5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)