Answer:
Step-by-step explanation:
The easiest way to tell if a relation is a function is to look at the x coordinates. If none of them are the same in the set, then the relation is a function. If any of the x values are used more than once in the set, it is only a relation. This set uses -3 two times, so it is a relation.
![\displaystyle\lim_{n\to\infty}\sqrt[n]{\left|\left(\frac{5n+15}{2n-1}\right)^n\right|}=\lim_{n\to\infty}\frac{5n+15}{2n-1}=\dfrac52](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bn%5Cto%5Cinfty%7D%5Csqrt%5Bn%5D%7B%5Cleft%7C%5Cleft%28%5Cfrac%7B5n%2B15%7D%7B2n-1%7D%5Cright%29%5En%5Cright%7C%7D%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7B5n%2B15%7D%7B2n-1%7D%3D%5Cdfrac52)
Since this limit exceeds 1, the series diverges.
Answer:
$9,220,000(0.888)^t
Step-by-step explanation:
Model this using the following formula:
Value = (Present Value)*(1 - rate of decay)^(number of years)
Here, Value after t years = $9,220,000(1 -0.112)^t
Value after t years = $9,220,000(0.888)^t
Answer:
i need more to answer the question
Step-by-step explanation: