1. The fractions shown are 3/4 and 6/8.
2. The multiplier is 2.
3. The fractions shown are 12/18 and 4/6
4. The divisor is 3.
Answer:
a) r = 0.974
b) Critical value = 0.602
Step-by-step explanation:
Given - Two separate tests are designed to measure a student's ability to solve problems. Several students are randomly selected to take both test and the results are give below
Test A | 64 48 51 59 60 43 41 42 35 50 45
Test B | 91 68 80 92 91 67 65 67 56 78 71
To find - (a) What is the value of the linear coefficient r ?
(b) Assuming a 0.05 level of significance, what is the critical value ?
Proof -
A)
r = 0.974
B)
Critical Values for the Correlation Coefficient
n alpha = .05 alpha = .01
4 0.95 0.99
5 0.878 0.959
6 0.811 0.917
7 0.754 0.875
8 0.707 0.834
9 0.666 0.798
10 0.632 0.765
11 0.602 0.735
12 0.576 0.708
13 0.553 0.684
14 0.532 0.661
So,
Critical r = 0.602 for n = 11 and alpha = 0.05
Answer:
The Distributive Property
Answer:
a
Step-by-step explanation:
Answer:
Step-by-step explanation:
Here's how you convert:
The little number outside the radical, called the index, serves as the denominator in the rational power, and the power on the x inside the radical serves as the numerator in the rational power on the x.
A couple of examples:
![\sqrt[3]{x^4}=x^{\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E4%7D%3Dx%5E%7B%5Cfrac%7B4%7D%7B3%7D)
![\sqrt[5]{x^7}=x^{\frac{7}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E7%7D%3Dx%5E%7B%5Cfrac%7B7%7D%7B5%7D)
It's that simple. For your problem in particular:
is the exact same thing as ![\sqrt[3]{7^1}=7^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B7%5E1%7D%3D7%5E%7B%5Cfrac%7B1%7D%7B3%7D)