The moving of molecules from areas of high concentration to that of low concentration to gain energy is best described as passive transport
<h3>What is passive transport?</h3>
Passive transport is a type of membrane transport in which chemicals are moved across cell membranes without using energy. Unlike active transport, which uses cellular energy, passive transport uses the second law of thermodynamics to cause the movement of substances across cell membranes.
<h3>Why is passive transport important?</h3>
Passive transport processes are critical to homeostasis. They maintain proper conditions inside the cell and the organism as a whole by letting chemicals to pass into and out of the cell.
To know more about Passive transport visit:
brainly.com/question/13542102
#SPJ4
The reason that some of the elements of period three and beyond are steady in spite of not sticking to the octet rule is due to the fact of possessing the tendency of forming large size, and a tendency of making more than four bonds. For example, sulfur, it belongs to period 3 and is big enough to hold six fluorine atoms as can be seen in the molecule SF₆, while the second period of an element like nitrogen may not be big to comprise 6 fluorine atoms.
The existence of unoccupied d orbitals are accessible for bonding for period 3 elements and beyond, the size plays a prime function than the tendency to produce more bonds. Hence, the suggestion of the second friend is correct.
Answer:
Explanation:
We can use the Ideal Gas Law and solve for T.
pV = nRT
Data
p = 1.25 atm
V = 25.0 L
n = 2.10 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
Calculations
1. Temperature in kelvins
2. Temperature in degrees Celsius
Ok so, remember that t<span>he average atomic mass is what is seen on the periodic table. It is the average mass of all of the isotopes with their frequency taken into account. What you need to do is add the products of the masses and frequencies Just like this:</span>
<span>0.903*267.8 + 0.097*270.9
When you add it the result is what you are looking for</span>
<span>Africa was more south and west and South America was more south and east of their current positions. I would say this would be because because South America and Africa used to be together in Gondwanaland millions of years ago and then apparently drifted apart as Wegener thought and then with the advent of plate tectonics it became apparent that the mid-Atlantic ridge runs between them and due to spreading along it Africa and S America got separated.</span>