Answer:
E = 17 kJ
Explanation:
The enthalpy of the reaction is:
<u>Where</u>:
Ep: is the energy of the products
Er: is the energy of the reactants
Similarly, the enthalpy of the reaction is related to the activation energy forward (
) and to the activation energy reverse (
) as follows:
Having that ΔH = 44 kJ and
= 61 kJ, the activation energy of the reverse reaction is:
Therefore, the activation energy of the reverse reaction is 17 kJ.
I hope it helps you!
Answer:
<u>1092K</u>
Explanation:
We can use the combined gas law to answer this question:
P1V1/T1 = P2V2/T2,
where P, V and T are the Pressure, Volume, and Temperature for initial (1) and Final (2) conditions. Temperatures must be in Kelvin.
The problem states that V2 = 2V1 and P2 = 2P1.
Let's rearrange to solve for T2, which is the question:
T2 = T1(P2/P1)(V2/V1)
Note how the pressure and temperature values are written: as ratios. Enter the values:
T2 = (273K)(P2/P1)(V2/V1)
T2 = (273K)(2P1/P1)(2V1/V1) [Use the expressions for V2 and P2 from above]
T2 = (273K)(2)(2)
T2 = 1092K
Answer:
The lipid bilayer made up of Palmitic acid will have a higher melting transition temperature
Explanation:
The one with a higher melting transition temperature is the lipid layer with a higher melting temperature
Melting temperature of palmitoleic acid = -0.5°C
Melting temperature of palmitic acid = 62.9°C
Hence the lipid bilayer made up of Palmitic acid will have a higher melting transition temperature
Answer:Water because it is an element