It is true because you can see that the ice cream is physically (melting) changing due to heat.
Answer:
3 hours
Explanation:
To know the the correct answer to the question given above, it is important we know the definition of half-life.
The half-life of a substance is simply defined as the time taken for half the substance to decay.
Considering the diagram given above, the initial mass of the substance is 100 g.
Half of the initial mass = 100 / 2 = 50 g
Now, we shall determine the time from the graph taken to get to 50 g.
Considering the diagram given above, the time taken to get to 50 g is 3 hours.
Therefore, the half-life of the material is 3 hours.
The electric potential due to ammonia at a point away along the axis of a dipole is 1.44
10^-5 V.
<u>Explanation:</u>
Given that 1 D = 1 debye unit = 3.34 × 10-30 C-m.
Given p = 1.47 D = 1.47
3.34
10^-30 = 4.90
10^-30.
V = 1 / (4π∈о)
(p cos(θ)) / (r^2)
where p is a permanent electric dipole,
∈ο is permittivity,
r is the radius from the axis of a dipole,
V is the electric potential.
V = 1 / (4
3.14
8.85
10^-12)
(4.90
10^-30
1) / (55.3
10^-9)^2
V = 1.44
10^-5 V.
Explanation:
c. positive., it gains electrons