Answer:
The concentration of cyclopropane after 22.0 hour is 0.0457 M.
Explanation:
Conversion of cyclopropane into propene follows first order kinetics.
The integrated rate of first order kinetic is given by :
![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
= Initial concentration of reactant
= final concentration of reactant after time t
k = rate constant of the reaction
We have :
Rate constant of the reaction = k = 
![[A_o]=0.150 M](https://tex.z-dn.net/?f=%5BA_o%5D%3D0.150%20M)
t = 22.0 hour
[A] =?
![[A]=0.150 M\times e^{-5.4\times 10^{-2} hour^{-1}\times 22.hour}](https://tex.z-dn.net/?f=%5BA%5D%3D0.150%20M%5Ctimes%20e%5E%7B-5.4%5Ctimes%2010%5E%7B-2%7D%20hour%5E%7B-1%7D%5Ctimes%2022.hour%7D)
![[A]=0.0457 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.0457%20M)
The concentration of cyclopropane after 22.0 hour is 0.0457 M.
All of the above I think it might not be right
Answer: Chemical X H3 and f1
Explanation:
Answer:
Intermolecular forces (IMFs) can be used to predict relative boiling points. The stronger the IMFs, the lower the vapor pressure of the substance and the higher the boiling point. Therefore, we can compare the relative strengths of the IMFs of the compounds to predict their relative boiling points.
Explanation:
When we convert the given mass in grams and volume in liters to m/v percent, we recall that m/v percent is expressed as grams/100 milliliters. In this case the expression becomes (50 grams/ 2500 L)*(0.1L/100ml), that is equal to 0.002 grams/ 100 mL. Hence the the concentration is equal to 0.2 m/v percent.