The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:

Explanation:
The two requirements for a measurement are a <u>number</u> and a <u>unit.</u>
For example, here is a measurement:
38.6 cm
The <u>number</u> is 38.6 and the <u>unit</u> is cm, or centimeters.
Therefore, both <em>number </em>and <em>unit</em> are correct.
Answer:
Ability to conduct electricity
Melting point
Actual yield of Fe2(So4)3 = 18.5g
2FePo4 + 3Na2SO4 -> Fe2(SO4)3 + 2Na3PO4
Mole of FePO4 = mass of it / its molar mass =
25 g / (55.8 + 31 + 16*4) = 0.166 mol
every 2 mole of FePO4 will form 1 mole of Fe2(SO4)3
Mole of Fe2(SO4)3 produced = 0.166 / 2 = 0.0829 mol
0.0829 * (55.8*2 + 3*(32.1+ 16*4)) = 33.148 g of Fe2(SO4)3
18.5 / 33.148 * 100 = 55.8%