Answer:
The nswer to the question is
The maximum fraction of the air in the room that could be displaced by the gaseous nitrogen is 0.548 or 54.8 %
Explanation:
To solve the question we note that
The density of the liquid nitrogen = 0.808g/mL and the volume is 195 L tank (vaporised)
Therefore since density = mass/volume we have
mass = Density × volume = 0.808 g/mL × 195 L × 1000 ml/L =157560 g
In gaseous form the liquid nitrogen density =1.15 g/L
That is density = mass/volume and volume = mass/density = 157560 g/(1.15g/L) or
volume = 137008.69565 L
The dimension of the room = 10 m × 10 m × 2.5 m = 250 m³ and
1 m³ is equivalent to 1000 L, therefore 250 m³ = 250 m³ × 1000 L/m³ = 250000L
Therefore fraction of the volume occupied by the gaseous nitrogen =
137008.69565 L/250000 L = 0.548
Therefore the gaseous nitrogen occpies 54.8% of the room
Answer:
you tilt the cylinder at a slight angle so that the metal slides down the sides, rather than drops all it`s weight to the bottom
Losing electrons and forming positive ions
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the required new volume by using the Charles' law as a directly proportional relationship between temperature and volume:

In such a way, we solve for V2 and plug in V1, T1 and T2 to obtain:

Regards!
Answer:
as the greatest heat capacity? a. 1,000 g of water b. 1,000 g of steel c. 1 g of water d. 1 g ... +1. kvargli6h and 1 other learned from this answer. Answer: a. 1,000 g of water ... Heat capacity of steel = 0.49 J/gram^0C. Hence 1,000 g of water will have greatest heat capacity.
Explanation: