Answer:

Explanation:
Given:
Pressure = 745 mm Hg
Also, P (mm Hg) = P (atm) / 760
Pressure = 745 / 760 = 0.9803 atm
Temperature = 19 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (19 + 273.15) K = 292.15 K
Volume = 0.200 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9803 atm × 0.200 L = n × 0.0821 L.atm/K.mol × 292.15 K
⇒n = 0.008174 moles
From the reaction shown below:-

1 mole of
react with 2 moles of 
0.008174 mole of
react with 2*0.008174 moles of 
Moles of
= 0.016348 moles
Volume = 13.4 mL = 0.0134 L ( 1 mL = 0.001 L)
So,



In order to find the mass of tin with the given volume of 5.5 L and density of 7.265, we will use the formula
Density = Mass / Volume
We will just multiply both sides of the equation by the volume and we will get:
Mass = Volume x Density
We can now solve the problem by substituting the given.
Mass = 5.5 L x 7.265 g/L
Mass = 39.96 g
Answer: there are 39.96 grams of tin
Answer:
option b
Explanation:
When the energy is released the process is called exothermic reaction. This happens when the bonds are broken in the reactants and the system release energy.
Answer:
Sr would be the limiting reactant
5 moles
Explanation:
Since the equation is a balanced equation, the coefficient shows how each substance relates to the other in terms of the number of moles.
Reactants would be those on the left hand side of the arrow, while the products would be found on te right and side of the arrow. In this question, the reactants would be Sr and O₂.
Limiting reactant is the reactant that is insufficient; meaning to say that there is not enough of that substance and thus the reaction cannot continue. The other reactant(s) that is not limiting is called the excess reactants.
From the balanced equation, 2 moles of Sr is needed to react with 1 mole of O₂. Thus, if we have 5 moles of each reactant, Sr would be the limiting reactant since for every 1 mole of O₂, there has to be 2 moles of Sr in order for the reaction to proceed. Thus, if we have 5 moles of O₂, we would need 10 moles of Sr.
When we work out the amount of products formed, we look at the number of moles of the limiting reactant. This is because the limiting reactant determines how much is being reacted, while the excess number of moles of the excess reactant will remain unreacted.
For every 2 moles of Sr reacted, 2 moles of SrO would be produced. This means that the mole ratio of Sr to SrO is 1:1. Thus, since 5 moles of Sr has been reacted, 5 moles of the product (SrO) would be produced.
A. Flueorescece. <span>The light from these ultraviolet lamps reacts with the chemicals of a mineral and causes the mineral to glow.
Hope I get Brainliest</span>