1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
3 years ago
11

after 12 girls left the school assembly the ratio of the number of boys to girls is 3 to 4. if there were w boys at the assembly

, write an algebraic expression for the number of girls at the beginning of the assembly in terms of w
Mathematics
1 answer:
son4ous [18]3 years ago
3 0
Let g = original # of girls at the assembly.
Let w = # of boys at the assembly.

Equation of ratios:

w                 3         boys
-------    =    ---- = --------------------------------------------
g-12             4      girls after 12 have left assembly
                                                                                     4w + 36
Cross-mult., 4w = 3g - 36, so 4w + 36 = 3g, and g = ---------------  (answer)
                                                                                           4

This is "original # of girls at the assembly in terms of w, the # of boys at the assembly."
You might be interested in
Find the equation of the line that passes through the points (12,21) and (46,33). V.35r-162
AnnZ [28]

Answer:

the answer is Y=(6/17)X + (285/17)

Step-by-step explanation:

1. Identify the X and Y coordinate of each point.            

for example, the first point could be (12,21), therefore X1 = 12 and Y1 = 21 and the second point is then (46,33), therefore X2 = 46 and Y2 = 33

2. to find the equation of the line it is necessary to find the slope.

knowing that the equiation of the slope is M = Y2-Y1/X2-X1 we replace

  m=\frac{33-21}{46-12}=\frac{12}{34} and then we simplify the result to \frac{12}{34}

3. Using the Point-slope equation which is  Y-Y1=M(X-X1) we replace

 Y-33=\frac{6}{17}(X-46)

Y=\frac{6}{17}X-\frac{276}{17}+33

Y=\frac{6}{17}X+\frac{285}{17}

7 0
3 years ago
Given that f(x) = √(ax + 1) , with x ≥ -1/a and a > 0
padilas [110]

Answer:

\displaystyle 7

Step-by-step explanation:

first thing I assume by f~¹ you meant f^{-1} however

we want to find <u>a²</u><u>+</u><u>3</u><u>x</u><u>-</u><u>3</u><u> </u>for the given condition. with the composite function condition we can do so

<u>Finding</u><u> the</u><u> </u><u>inverse</u><u> of</u><u> </u><u>f(</u><u>x)</u><u>:</u>

\displaystyle f(x) =  \sqrt{ax + 1}

substitute y for f(x):

\displaystyle y=  \sqrt{ax + 1}

interchange:

\displaystyle x=  \sqrt{ay + 1}

square both sides:

\displaystyle  ay + 1  =  {x}^{2}

cancel 1 from both sides:

\displaystyle  ay =  {x}^{2}  - 1

divide both sides by a:

\displaystyle  y =   \frac{{x}^{2}  - 1 }{a}

substitute f^-1 for y:

\displaystyle   f ^{ - 1} (x) =   \frac{{x}^{2}  - 1 }{a}

<u>finding</u><u> the</u><u> </u><u>inverse</u><u> of</u><u> </u><u>g(</u><u>x)</u><u>:</u>

\displaystyle g(x) =   \frac{x + 1}{x}

substitute y for g(x)

\displaystyle y=   \frac{x + 1}{x}

interchange:

\displaystyle  \frac{y + 1}{y}  =x

cross multiplication

\displaystyle  y + 1= xy

cancel 1 from both sides

\displaystyle  y  - xy= - 1

factor out y:

\displaystyle  y(1  - x)= - 1

divide both sides by 1-x:

\displaystyle  y=    -  \frac{1}{ 1 - x}

substitute g^-1 for y:

\displaystyle  g ^{ - 1} (x)=    -  \frac{1}{ 1 - x}

remember that

\displaystyle (f   \circ g)x = f(g(x))

therefore we obtain:

\rm \displaystyle   (f ^{ - 1} \circ g ^{ - 1} ) (3) =   \frac{{  \bigg(- \dfrac{1}{1 - 3} }  \bigg)^{2}  - 1 }{a}

since (f~¹•g~¹)(3)=-⅜ thus substitute:

\rm \displaystyle    \frac{{  \bigg(- \dfrac{1}{1 - 3} }  \bigg)^{2}  - 1 }{a} =   - \frac{3}{8}

simplify parentheses:

\rm \displaystyle    \frac{{  \bigg( \dfrac{1}{2} }  \bigg)^{2}  - 1 }{a} =   - \frac{3}{8}

simplify square:

\rm \displaystyle    \frac{{   \dfrac{1}{4} }  - 1 }{a} =   - \frac{3}{8}

simplify substraction:

\rm \displaystyle     \frac{ - \dfrac{3}{4} }{ a}=   - \frac{3}{8}

simplify complex fraction:

\rm \displaystyle     - \dfrac{3}{4a} =   - \frac{3}{8}

get rid of - sign:

\rm \displaystyle      \dfrac{3}{4a} =    \frac{3}{8}

divide both sides by 3:

\rm \displaystyle      \dfrac{1}{4a} =    \frac{1}{8}

cross multiplication:

\rm \displaystyle      4a=    8

divide both sides by 4:

\rm \displaystyle      \boxed{ a=    2}

as we want to find <u>a²</u><u>+</u><u>3</u><u>a</u><u>-</u><u>3</u><u> </u>substitute the got value of a:

\displaystyle  {2}^{2}  + 3.2 - 3

simplify square:

\displaystyle 4  + 3.2 - 3

simplify multiplication:

\displaystyle 4  +6 - 3

simplify addition:

\displaystyle 10 - 3

simplify substraction:

\displaystyle 7

and we are done!

7 0
3 years ago
Perform the indicated operation. Assume that all variables represent non-negative real numbers
Slav-nsk [51]

Without a vale to substitute for the variable, we can only simplify the expression: since 8=4\cdot 2 and 50 = 25\cdot 2, the expression becomes

-4\sqrt{8m} + 7\sqrt{50m} = -4\sqrt{2\cdot 4m} + 7\sqrt{2\cdot 25m}

Now use the property \sqrt{ab} = \sqrt{a}\sqrt{b}\ \forall\ a,b\geq 0

-4\sqrt{4}\sqrt{2m} + 7\sqrt{25}\sqrt{2m} = -8\sqrt{2m}+35\sqrt{2m}

Now we can factor \sqrt{2m}:

-8\sqrt{2m}+35\sqrt{2m} =\sqrt{2m}(-8+35) = 27\sqrt{2m}

6 0
3 years ago
Brad built a rectangular brick wall in the back yard. The wall is 20 feet long and 6 feet high. The wall cost $9 dollars per Squ
soldi70 [24.7K]
$1,080 to build the wall
3 0
4 years ago
3x+10=3x-28 solve for x<br>​
Yuri [45]

Step-by-step explanation:

it has no solution or the question is not properly inputted

6 0
3 years ago
Other questions:
  • Naomi lives 5 1/2 blocks north of school. Marco lives 8 blocks north of school. How far does Naomi live from Marco
    6·1 answer
  • I will give brainleist to the first person who answers
    10·2 answers
  • What does this mean?
    5·1 answer
  • Which of the following is an arithmetic sequence with common difference 2?
    6·1 answer
  • Spencer throws a fair six-sided dice.
    6·1 answer
  • Solve [0, 2pi) <br> 3 Cos(2x) = 5 Sin(x) - 1
    13·1 answer
  • If M (-4,7) is the midpoint of B (-3,-6), find the cords of point A. please show work
    6·1 answer
  • 2. Multiple choice: Which number is an integer?<br> a. -11/5<br> b. -7<br> V15<br> c.<br> d. 1/2
    15·2 answers
  • Here is another question<br> Angle C and Angle E are supplementary. Find the measure of Angle E.
    9·2 answers
  • ASAP RIGHT NOW. I AM ON A LIMIT RIGHT NOW. 100 BRAINLEST POINTS WHOEVER ANSWERS FIRST AND GETS IT CORRECT.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!